Вариант № 14
Задача 1. Найти общее решение дифференциального уравнения
, (1) – уравнение с разделяющимися переменными
![]()
Интегрируя обе части уравнения, получим: 
Общее решение уравнения (1): ![]()
Задача 2.Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Найдем общее решение дифференциального уравнения с разделяющимися переменными
![]()
Интегрируя обе части уравнения, получим:
![]()
Общее решение уравнения ![]()
Подставляем в полученное решение начальное условие: ![]()
Значит, искомое частное решение: ![]()
Задача 3. Решить дифференциальное уравнение
(1)
; Применим подстановку ![]()
![]()
Тогда: ![]()
Интегрируя, получим общий интеграл уравнения
В результате общий интеграл уравнения имеет вид:
![]()
Подставляя значение
, получим общий интеграл уравнения (1): ![]()
Задача 4. Решить дифференциальное уравнение
(1)
Составим определитель ![]()
Положим
, где
Определяются из системы уравнений:
![]()
Положим в уравнении (1)
; Получим: 
Применим подстановку ![]()
![]()
Тогда: 
Интегрируя обе части уравнения, получим:
Учитывая, что
, получим общий интеграл уравнения (1): ![]()
Задача 5.Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Ищем общее решение линейного неоднородного дифференциального уравнения 1-го порядка
(1)
Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка
![]()
Общее решение этого уравнения: ![]()
Применим метод вариации постоянных: ![]()
Дифференцируем Y По X: ![]()
Подставляем полученные значения в уравнение (1):
![]()
Следовательно, общее решение линейного неоднородного дифференциального уравнения 1-го порядка: ![]()
Подставляем в полученное решение начальное условие:
![]()
Значит, искомое частное решение: ![]()
Задача 6. Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.
![]()
Ищем общее решение уравнения Бернулли:
(1) ![]()
Применим подстановку ![]()
Подставляем в уравнение (1):
(2)
Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка:
![]()
Общее решение этого уравнения: ![]()
Применим метод вариации постоянных:
; Дифференцируем Z По X: ![]()
Подставляем полученные значения в уравнение (2): ![]()
Значит: ![]()
Следовательно, общее решение уравнения Бернулли (1): ![]()
Подставляем в полученное решение начальное условие: ![]()
Значит, искомое частное решение: ![]()
Задача 7. Найти общий интеграл Дифференциального уравнения ![]()
Так как
, значит, мы имеем уравнение в полных дифференциалах
Находим ![]()

Общий интеграл Дифференциального уравнения ![]()
Задача 8. Определить тип дифференциального уравнения, найти общее решение и построить интегральную кривую, проходящую через точку
.
- дифференциальное уравнение 1-го порядка с разделяющимися переменными
Найдем общее решение однородного дифференциального уравнения 1-го порядка
Следовательно, общим решением является семейство кривых: ![]()
Из условий в точке М найдем: ![]()
Отсюда искомая интегральная кривая: 
Задача 9. Решить дифференциальное уравнение
(1) – явно не содержит Y.
Полагая
, имеем
, тогда уравнение (1) принимает вид:
.
Общее решение уравнения (1): 
Задача 10. Найти решение Дифференциального уравнения, удовлетворяющее заданным условиям.

Ищем общее решение дифференциального уравнения 2-го порядка:
- явно не содержит х.
Положим
, тогда уравнение преобразуется к виду:
- дифференциальное уравнение 1-го порядка с разделяющимися переменными
Ищем общее решение дифференциального уравнения 1-го порядка: 
Из условий
и
Имеем: ![]()
Значит:

Из условия
имеем 
Значит, имеем частное решение Дифференциального уравнения, удовлетворяющее заданным условиям:
![]()
Задача 11. Найти общее решение дифференциального уравнения
(1)
- линейное однородное уравнение 2 порядка с постоянными коэффициентами
Характеристическое уравнение:
Следовательно, фундаментальную систему решений уравнения (1) образуют функции ![]()
общее решение уравнения (1) имеет вид:
.
Задача 12. Найти частное решение Дифференциального уравнения, удовлетворяющее указанным условиям.

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами
(1)
Характеристическое уравнение:
Следовательно, фундаментальную систему решений уравнения (1) образуют функции ![]()
общее решение уравнения (1) имеет вид:
.
Продифференцируем ![]()
Из указанных условий имеем: ![]()
Частное решение Дифференциального уравнения, удовлетворяющее указанным условиям:
![]()
Задача 13. Найти общее решение дифференциального уравнения
(1)
- линейное неоднородное уравнение 2 порядка с постоянными коэффициентами и специальной правой частью
Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами ![]()
Характеристическое уравнение:
общее решение однородного уравнения имеет вид:
.
Структура общего решения неоднородного уравнения (1) имеет вид:
;
где
- общее решение однородного уравнения, а функция
- частное решение неоднородного уравнения.
Так как степень правой части не совпадает с корнем характеристического уравнения, то частное решение ищем в виде: ![]()
Подставляем частное решение в уравнение (1) и находим неопределенные коэффициенты: ![]()

Следовательно, Общее решение неоднородного уравнения (1):
![]()
Задача 14. Найти общее решение дифференциального уравнения
(1)
- линейное неоднородное уравнение 2 порядка с постоянными коэффициентами и специальной правой частью.
Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами ![]()
Характеристическое уравнение:
общее решение однородного уравнения имеет вид:
.
Применим принцип наложения решений (суперпозиции).
Структура общего решения неоднородного уравнения (1) имеет вид:
;
где
- общее решение однородного уравнения, а функции
- частные решения следующих уравнений:
;
;
Причём частные решения
ищем в виде:
; ![]()
Подставляем поочередно частные решения
в соответствующие уравнения и находим неопределенные коэффициенты:
![]()


Следовательно, Общее решение неоднородного уравнения (1):
![]()
Задача 15. Найти частное решение Дифференциального уравнения, удовлетворяющее указанным условиям.
Найдем решение линейного неоднородного уравнения 2 порядка с постоянными коэффициентами
(1)
Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами
![]()
Характеристическое уравнение:
Следовательно, фундаментальную систему решений однородного уравнения образуют функции ![]()
общее решение однородного уравнения имеет вид:
.
РЕшение линейного неоднородного уравнения ищем методом вариации произвольных постоянных:
, а неизвестные функции
определяем из системы уравнений:


Следовательно, Общее решение неоднородного уравнения (1):
![]()
Продифференцируем полученное решение ![]()
Из указанных условий имеем: ![]()
Частное решение Дифференциального уравнения, удовлетворяющее указанным условиям:
![]()
Задача 16. Найти общее решение дифференциального уравнения
(1)
- линейное неоднородное уравнение 3-го порядка с постоянными коэффициентами и специальной правой частью (многочлен)
Ищем решение линейного однородного уравнения 3 порядка с постоянными коэффициентами ![]()
Характеристическое уравнение:
Следовательно, фундаментальную систему решений уравнения (1) образуют функции ![]()
общее решение однородного уравнения имеет вид:
.
Частное решение
Ищем в виде:
;
![]()
Подставляем в неоднородное уравнение (1):
![]()

Следовательно, Общее решение неоднородного уравнения (1):
![]()
![]()
Задача 17. Найти общее решение уравнения Эйлера:
(1)
Введем новую независимую переменную
.
Положим
, тогда 
Подставим в уравнение (1) и получим 
- линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами и специальной правой частью (многочлен)
- линейное однородное уравнение 2 порядка с постоянными коэффициентами.
Характеристическое уравнение:
общее решение однородного уравнения имеет вид:
.
Применим принцип наложения решений (суперпозиции).
Структура общего решения неоднородного уравнения (1) имеет вид:
;
где
- общее решение однородного уравнения, а функции
- частные решения следующих уравнений:
;
;
Причём частные решения
ищем в виде:
; ![]()
Подставляем поочередно частные решения
в соответствующие уравнения и находим неопределенные коэффициенты:
![]()
![]()
Следовательно, Общее решение неоднородного уравнения:
![]()
Значит, Общее решение уравнения Эйлера (1): ![]()
Задача 18. Решить систему дифференциальных уравнений
(1)
Вычитая первое уравнение из второго, получим: ![]()
Применим подстановку: ![]()
Тогда, полученное выражение запишется в виде:
![]()
Подставим полученное выражение в систему: ![]()
Продифференцируем первое уравнение: ![]()
Выразив из второго уравнения
, получим: ![]()
- уравнение Эйлера
Положим
, тогда 
Подставим в уравнение и получим 
- линейное однородное уравнение 2 порядка с постоянными коэффициентами.
Характеристическое уравнение:
общее решение однородного уравнения имеет вид:
.
Значит, Общее решение уравнения Эйлера: ![]()
Из первого уравнения получим: 
| < Предыдущая | Следующая > |
|---|