Вариант № 09
Задача 1
Задача 2
Задача 3
Задача 4
Задача 5
Задача 6
Задача 7
Задача 8
;
Задача 9
Задача 10
Задача 11
;
Хар. ур. :
Задача 12
Задача 13
- лин. однор. диф. ур. 2 пор. с пост. коэф. ;
хар. ур. для ур – я (1):
След., фунд. с – му реш – й ур – я (1) образуют ф – и ;
общ. реш. ур. (1) имеет вид: .
Задача 14
- лин. однор. диф. ур. 4 пор. с пост. коэф. ;
Хар. ур. для ур – я (1): ,
След., фунд. с – му реш – й ур – я (1) образуют ф – и ;
Опр – ль Вронского для фунд. с – мы реш – й:
,
След., с – ма ф – й линейно независима;
Общ. реш. ур. (1) имеет вид: .
Задача 15
- лин. неоднор. диф. ур. 3 пор. с пост. коэф. и со спец. правой частью (квазимногочлен);
Соотв. однор. диф. ур.:
хар. ур. для ур – я (2): ;
Общ. реш. однор. ур. (2) имеет вид: ;
Структура общего реш – я неоднор. ур - я (1) имеет вид: ;
Где - общ. реш. однор. ур. (2), а функции суть, соответственно, частные реш–я след. ур–й:
;
, причём частные реш – я Ищем в виде:
.
Задача 16
- зад. Коши.
Ур – е (1)- лин. неоднор. диф. ур. 3 пор. с пост. коэф. и со спец. правой частью (многочлен);
Соотв. однор. диф. ур.:
хар. ур. для ур – я (5): ;
Общ. реш. однор. ур. (5) имеет вид: ;
Частное реш – е неоднор. диф. ур. (1) Ищем в виде: ;
Рассм.
; ;
Общее реш – е неоднор. ур - я (1) имеет вид: ;
Рассм. ; ;
Опр – м пост. из нач. усл – й (2), (3), (4):
;
;
Реш. зад. Коши (1) - (4): .
Задача 17
- лин. неодн. диф. ур. 2 пор. с пост. коэф. и со спец. прав. частью (квазимногочлен);
Соотв. однор. диф. ур.: хар. ур. для ур – я (2): ;
Общ. реш. однор. ур. (2) имеет вид: ;
Структура общего реш – я неоднор. ур - я (1) имеет вид:
; где - общ. реш. однор. ур. (2), а - частное реш – е неодн. ур – я (1), которое ищем в виде: ; рассм.
;
;
Общее реш – е неоднор. ур - я (1) имеет вид: .
Задача 18
- лин. неоднор. диф. ур. 2 пор. с пост. коэф. и со спец. правой частью (квазимногочлен);
Соотв. однор. диф. ур.: хар. ур. для ур – я (2): ;
Общ. реш. однор. ур. (2) имеет вид: ;
Структура общего реш – я неоднор. ур - я (1) имеет вид: ;
Где - общ. реш. однор. ур. (2), а - частное реш – е неодн. ур – я (1), которое ищем в виде: ; рассм.
;
;
Общее реш – е неоднор. ур - я (1) имеет вид: .
Задача 19
- лин. неоднор. диф. ур. 2 пор. с пост. коэф.;
Соотв. однор. диф. ур.:
хар. ур. для ур – я (2): ;
След., фунд. с – му реш – й ур – я (2) образуют ф – и ;
А общ. реш. однор. ур. (2) имеет вид: ;
Общ. реш. неоднор. ур. (1) будем искать методом вариации произвольных постоянных, то есть в виде , а неизвестные ф – и опр – м из с – мы ур – й:
;
;
Общее реш – е ур - я (1) имеет вид: .
< Предыдущая | Следующая > |
---|