Вариант № 25
Задача 1 Разложить вектор По векторам и .
Пусть , т. е. ;
След., вектор .
Задача 2 Найти длину диагонали параллелограмма, построенного на векторах , если
Рассм. диагонали параллелограмма ;
Вычислим ;
;
Задача 3 Показать, что точки Являются вершинами параллелограмма и найти проекцию одной из диагоналей на большую сторону параллелограмма.
Рассм.
, след. - параллелограмм (так как две противоположные стороны параллельны и равны);
Рассм. Рассм. ; ,
След. - большая сторона параллелограмма ; рассм. диагональ ;
Вычислим Вычислим ;
.
Задача 4 Длина гипотенузы прямоугольного треугольника равна . Вычислить
Задача 5 Найти момент силы, приложенной в точке относительно точки, а также модуль и направляющие косинусы вектора силы
1) , где ; ;
;
2) ;
Направл. косинусы вектора : ; ; .
Задача 6 Треугольник построен на векторах Найти длину высоты , если векторы взаимно перпендикулярны и по модулю равны
Рассм. векторы рассм. ;
;
;
;
Задача 7 Найти координаты вершины тетраэдра, если известно, что она лежит на оси , объём тетраэдра равен , .
Пусть искомая вершина тетраэдра (т. к. т. );
Рассм. в-ры: ;
Рассм. смешанное произв-е:
Рассм. объём тетраэдра : ; ; ;
; ; ; след., возможные положения искомой т.: ; .
Задача 8 В треугольнике известны координаты двух вершин: И точки пересечения медиан . Составить уравнение высоты треугольника, проведённой из вершины .
|
1) Определим координаты точки Как середины отрезка :;
2) Определим координаты вершины , используя равенство , где ;
Рассм.
;
3) составим ур-е высоты : рассм. в-р ;
Рассм. т. И рассм. в-р ; тогда по условию задачи и и, след., ур-е прямой , проходящей через Перпендикулярно в-ру , можно записать в виде: т. е. .
Задача 9 В параллелограмме известны уравнения сторон и координаты точки пересечения диагоналей Составить уравнения двух других сторон и диагоналей параллелограмма.
1) определим координаты точки как точки пересечения прямых :
;
2) определим координаты точки из условия, что т. - середина отрезка :
;
3) составим уравнение диагонали как прямой, проходящей через точки : ;
4) составим уравнение стороны как прямой, проходящей через точку параллельно
Прямой ;
5) составим уравнение стороны как прямой, проходящей через точку Параллельно
Прямой ;
6) определим координаты точки как точки пересечения прямых :
;
7) составим уравнение диагонали как прямой, проходящей через точки : .
Задача 10 Составить уравнение плоскости, проходящей через точки
Пусть - искомая плоскость; рассм. векторы ;
Рассм. норм. вектор ;
Рассм. произв. т. и рассм. вектор ;
, т. е. ;
Задача 11 Составить уравнение прямой , которая, проходит через точку и пересекает две прямые и .
Рассм. направл. векторы прямых ;
Рассм. т.; рассм. векторы ;
Пусть - плоскость, в которой лежат прямые ; пусть - плоскость, в которой лежат прямые ; тогда искомая прямая есть линия пересечения плоскостей ;
;
;
В качестве направл. вектора прямой можно взять вектор ; выберем ;
Запишем канонические ур-я прямой Как ур-я прямой, проходящей через т. А параллельно
Вектору : ; параметрические ур-я прямой :
Задача 12 Составить уравнение геометрического места всех прямых, проходящих через точку перпендикулярно прямой .
Запишем канонич. уравнения прямой в виде: ; её направл. вектор ;
Рассм. произв. прямую , удовлетв. условию задачи; рассм. произв. точку и её направл. вектор ; , т. е. ;
Плоскость и есть искомое геометрическое место.
Задача 13 Вычислить определитель третьего порядка, пользуясь определением; результат проверить разложением
Определителя по первой строке.
1) Непосредственное вычисление:
2) Разложение по 1-й строке:
Задача 14 Решить систему линейных уравнений по правилу Крамера и с помощью обратной матрицы:
Запишем данную систему уравнений в матричной форме: , (1) , где ; ; ;
Рассм. опред-ль матрицы : ,
След., матр. - невырожденная и можно применять формулы Крамера и вычислять обратную матр. ;
1) решим с – му ур – й (1) по правилу Крамера, т. е. с помощью формул: , , , где ;
;
;
; , , ;
реш–е с–мы ур–й (1) в коорд. форме: вектор–решение с-мы (1): ;
2) получим реш–е с–мы ур–й (1) с помощью обратной матр. :
, след., матр.- невырожденная и существует обратная матр. ;
Умножим рав-во (1) слева на матрицу : , ; вычислим обратную матр. :
Находим алгебр. дополнения для всех эл-тов матрицы и составим из них м-цу :
Транспонируем м-цу и получим «присоединённую» м-цу
Разделим все эл-ты присоедин. м-цы на опр-ль и получим обратную матр. :
Находим теперь вектор-решение :
Задача 15 Установить, являются ли векторы линейно зависимыми.
Вычислим ранг системы векторов методом Гаусса, т. е. выпишем матрицу их координат и приведём её к ступенчатому виду:
ранг матрицы , след. данная система векторов линейно независима.
Задача 16 Исследовать систему линейных уравнений на совместность и в случае совместности найти её решение методом Гаусса.
Выпишем расширенную матрицу данной системы ур-й и приведём её к ступенчатому виду:
имеем ;
Так как , то по теореме Кронекера - Капелли данная система уравнений совместна, а так как , то система имеет бесконечное множество решений; объявим свободной переменной и выпишем общее решение системы в координатной форме:
общее решение системы имеет вид:
Задача 17 Найти матрицу преобразования, выражающего Через , если
Запишем данные преобразования в матричной форме: , где матрицы и
Вектор - столбцы имеют вид:
Рассм. ;
Вычислим матрицу .
Задача 18 Найти собственные числа и собственные векторы линейного преобразования, заданного матрицей
1) Находим собств. значения линейного преобразования , т. е. корни характеристического уравнения :
Рассм.
- собств. значения (действ.) лин. преобр-я ;
2) находим собств. векторы линейного преобразования , соотв. собств. значениям :
А) рассм.
Рассм. Пусть , тогда вектор ;
Б) рассм.
Рассм.
Пусть , тогда , вектор ;
Пусть , тогда , вектор ;
След. собств. векторы линейного преобразования суть:
; ; .
< Предыдущая |
---|