6.5. Экстремумы функции нескольких переменных
Говорят, что Функция имеет Максимум (минимум) В точке , если для всех точек из - окрестности точки выполняется неравенство ( ). Максимум или минимум функции называется её Экстремумом.
Если функция имеет частные производные и точка - точка экстремума функции , то частные производные функции в этой точке равны нулю:
(13)
(Необходимый признак Существования экстремума Функции двух переменных).
Точки, в которых и равны нулю или не существуют, называются критическими. Таким образом, точки экстремума функции следует искать среди её критических точек.
Следующая теорема дает Достаточный признак существования экстремума функции двух переменных:
1) если выполнено условие:
, (14)
То в точке функция имеет экстремум, причем в случае точка - точка максимума, а в случае точка - точка минимума;
2) если выполнено условие:
, (15)
То у функции нет экстремума в точке ;
3) если выполнено условие:
, (16)
То вопрос о наличии у функции в точке экстремума остается открытым – требуются дополнительные исследования.
Функция , непрерывная в замкнутой области и дифференцируемая внутри неё, достигает своего наибольшего (наименьшего) значения либо внутри области , либо на её границе.
Нахождение наибольшего и наименьшего значений данной функции рекомендуется проводить по следующей схеме:
1. Найти критические точки, лежащие внутри области , и вычислить значения функции в этих точках.
2. Найти наибольшее и наименьшее значения функции на каждой линии, ограничивающей область. Это сводится к нахождению наибольшего и наименьшего значений функции одной переменной.
3. После этого среди всех полученных значений найти наибольшее наименьшее. Эти значения и будут соответственно наибольшим и наименьшим значениями функции в замкнутой области .
Задание. Найти наибольшее и наименьшее значения функции в замкнутой области , ограниченной прямой и параболой .
Решение. 1. Сделаем чертеж области :
2. Найдем критические точки данной функции , лежащие внутри области . Для этого найдем частные производные функции и приравняем их к нулю:
,
Решением системы является значения:
Точка не принадлежит замкнутой области . Следовательно, наибольшее и наименьшее значения данная функция может принимать только на границе области .
3. Исследуем функцию на границе области .
1) На отрезке прямой имеем функцию
,
Которая представляет собой функцию одной переменной . Её наибольшее и наименьшее значения следует искать среди её значений в критических точках и на концах отрезка . Найдём производную функции и приравняем её к нулю:
.
Решая полученное уравнение, находим:
- критическая точка, но она не принадлежит отрезку . Следовательно, наибольшее и наименьшее значения функция принимает на концах отрезка :
2) На дуге параболы имеем функцию
,
Которая представляет собой функцию одной переменной . Найдем производную функции и приравняем к нулю:
.
Решая полученное уравнение, находим его корни:
- критические точки, из которых только значение принадлежит отрезку . Следовательно, наибольшее и наименьшее значения функция принимает либо в точке , либо на концах отрезка :
Сравнивая все вычисленные значения функции , находим наибольшее и наименьшее значения данной функции в замкнутой области : - наибольшее значение (в точке ); - наименьшее значение (в точке ).
< Предыдущая |
---|