58. Теорема Бернулли
Рассмотрим систему независимых испытаний Бернулли.
Система испытаний неограниченна. С каждым i-видом испытаний свяжем дискретную величину Xi
Хi принимают значения 1, если в i-том испытании произошло событие А и 0 - в противном случае
Рассмотрим случайную величину - число появлений события А в n испытаниях
Рассмотрим случайную величину
Это частость наступления события А в n испытаниях
Используем неравенство Чебышева
Где e - произвольное неотрицательное число
Рассмотрим
Получена Теорема Бернулли.
Частость наступления произвольного события при числе испытаний стремящемся к бесконечности по вероятности сходится к теоретической вероятности наступления события.
Обоснование того, что - частость наступления события A заключается в следующем: с тоски зрения ранее приведенного определения, независимым испытаниям эквивалентны две схемы:
· проведение n раз одного и того же испытания
· проведение n независимых испытаний над n копиями одного и того же.
Аналогия: 100 раз монету подбрасывает 1 человек или 100 человек подбрасывают по одной монете.
< Предыдущая | Следующая > |
---|