Тема 2.3. Упражнения
1) В ящике 50 одинаковых деталей, из них 5 окрашенных. Наудачу вынимают одну деталь. Найти вероятность того, что извлеченная деталь окажется окрашенной.
2) Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 100. Найти вероятность того, что номер первого извлеченного жетона не содержит цифры 5.
3) В мешочке имеется 5 одинаковых кубиков с буквами: О, П, Р, С, Т. Кубики вынимают по одному и располагают в ряд Найти вероятность того, что получится слово СПОРТ.
4) На шести карточках напечатаны буквы: А, Т, М, Р, С, О. Карточки перемешаны. 4 карточки вынимают по одной и располагают в ряд. Найти вероятность того, что получится слово ТРОС.
5) Куб, все грани которого окрашены, распилен на 1000 одинаковых кубиков, которые тщательно перемешаны. Найти вероятность того, что наугад взятый кубик будет иметь: а) 1 окрашенную грань, б) 2 окрашенные грани, в) 3 окрашенные грани.
6) Из набора 28 костей домино наудачу извлечена 1 кость. Найти вероятность того, что вторую наудачу извлеченную кость можно приставить к первой, если первая: а) дубль, б) не дубль.
7) В замке на общей оси 5 дисков. Каждый диск разделен на 6 секторов. Замок открывается только при определенном положении дисков. Найти вероятность того, что при произвольной установке дисков замок будет открыт.
8) 8 различных книг расставлены на полке наугад. Найти вероятность того, что 2 определенные книги окажутся рядом.
9) Среди 10 различных книг: 5 книг по 40 руб, 3 книги по 10 руб, 2 книги по 30 руб. Найти вероятность того, что 2 взятые наугад книги стоят 50 руб.
10) В урне 10 пронумерованных по порядку шаров. Наугад вынимают один за другим все, находящиеся в ней шары. Найти вероятность того, что номера вынутых шаров будут идти по порядку.
11) В урне 10 пронумерованных по порядку шаров. Наугад вынимают один шар, записывают его номер, кладут шар обратно и перемешивают. Найти вероятность того, что номера вынутых шаров будут идти по порядку.
12) В урне 6 белых и 8 черных шаров. Из урны вынимают одновременно 2 шара. Какое событие более вероятно: А – шары одного цвета, В – шары разных цветов.
13) В урне 10 пронумерованных по порядку шаров. Из урны 7 раз вынимается по одному шару, номер записывается и шар кладется обратно в урну. Найти вероятность того, что все записанные номера будут различны.
14) В лифт 9-этажного дома на первом этаже вошли 3 человека. Каждый из них с одинаковой вероятностью выходит на любом этаже, начиная с третьего. Найти вероятность следующих событий: А – все пассажиры выйдут на 5 этаже, В – все пассажиры выйдут одновременно (на одном и том же этаже), С – все пассажиры выйдут на разных этажах.
15) 10 человек случайным образом рассаживаются за круглым столом. Найти вероятность того, что два фиксированных лица А и В окажутся рядом.
16) 10 человек случайным образом рассаживаются за прямоугольным столом вдоль одной из его сторон. Найти вероятность того, что два фиксированных лица А и В окажутся рядом.
17) Батарея из 10 орудий ведет огонь по группе из 15 самолетов. Орудия выбирают себе цели случайным образом и независимо от других. Найти вероятность того, что все 10 орудий будут стрелять по одной и той же цели.
18) В розыгрыше первенства по баскетболу участвуют 18 команд, из которых случайным образом формируются 2 группы по 9 команд в каждой. Среди участников соревнований имеется 5 команд экстракласса. Найти вероятность того, что а) все команды экстракласса попадут в одну и ту же группу; б) две команды экстракласса попадут в одну из групп, а три в другую.
19) В барабане револьвера семь гнезд, из них в пяти заложены патроны, а два оставлены пустыми. Барабан приводится во вращение, в результате чего против ствола случайным образом оказывается одно из гнезд. После этого нажимается спусковой крючок; если ячейка была пустая, то выстрела не происходит. Найти вероятность того, что повторив такой опыт два раза подряд, оба раза выстрел не произойдет.
20) В условиях предыдущего упражнения найти вероятность того, что оба раза выстрел произойдет.
21) В партии, состоящей из 50 изделий, имеется 5 дефектных. Из партии выбирается для контроля 10 изделий. Найти вероятность того, что из них ровно 3 будут дефектными.
22) Ирочка Маслова наивно верит, что если она соберет 20 разных наклеек от жвачек Барби и отошлет их по указанному адресу, то добрые тети и дяди пришлют ей взамен настоящую куклу Барби. Объясните Ирочке строго математически нереальность ее затеи, вычислив вероятность собрать 20 разных наклеек, купив ровно 20 жвачек.
23) Пустые горшочки с медом Винни-Пух ставит на полочку вместе с полными для того, чтобы вид уменьшающегося числа горшков не слишком портил ему настроение. В настоящий момент в Пуховом буфете вперемежку стоят 5 горшочков с медом и 6 абсолютно пустых. Какова вероятность того, что в двух взятых на ужин горшочках окажется мед?
24) Когда Костя Сидоров, ученик 6 «б» класса, наконец-то обнаружил в буфете кулек с конфетами, он услышал, как отворилась входная дверь. Это пришла из магазина бабушка Пелагея Марковна. Времени на выбор не было, и Костя, запустив руку в кулек, едва успел переместить к себе в карман две конфеты. Какова вероятность того, что ему достался хотя бы один "Мишка на Севере", если в кульке было 7 конфет с помадкой, 5 соевых батончиков и 3 "Мишки на Севере"?
25) Ученик 6 «б» класса Костя Сидоров застал двухлетнюю сестренку Катю в момент, когда та инспектировала свой тайник, расположенный в проеме между стеной и книжным шкафом. В тайнике у Кати хранились пуговицы, срезанные в разное время с различных предметов одежды: 5 белых пуговиц с теперь уже не новой папиной рубашки, 3 красные пуговки с маминого халатика и 4 пуговицы с купленной три дня назад Костиной джинсовой куртки. Не обращая внимания на Катины протесты, Костя просунул руку в щель, нащупал 2 пуговицы и вытащил их. Какова вероятность того, что это пуговицы с куртки?
26) Чайный сервиз на 6 персон состоит из 6 чашек, 6 блюдец, чайника, сахарницы и молочника. Во время ссоры нигде не работающая Клава запустила в своего сожителя Григория тремя первыми попавшимися под руку предметами из сервиза. Какова вероятность того, что не пострадали чашки?
< Предыдущая | Следующая > |
---|