04. Сходимость правильных бесконечных цепных дробей

Теперь покажем, что сходящейся является последовательность подходящих дробей не только такой бесконечной непрерывной дроби, которая возникает при разложении иррационального числа , но и любой бесконечной непрерывной дроби , где , а - произвольно выбранные целые положительные числа.

Но для этого мы заново исследуем взаимное расположение подходящих дробей.

С этой целью рассмотрим формулы:

(1) и (2),

Которые справедливы для любой бесконечной непрерывной дроби.

1. Формула (1) показывает, что любая подходящая дробь четного порядка больше двух соседних подходящих дробей, у которых порядок на единицу меньше или больше, чем у нее, то есть и . Согласно этому и расположены слева от , и – слева от и так далее.

2. Формула (2) показывает, что расстояние между соседними подходящими дробями при увеличении k убывает. Действительно, так как , то

3. Согласно этому свойству ближе к , чем , а так как и находятся слева от , то <.

—————————————————

Из этого следует, что подходящая дробь , которая, как и , расположена справа от , ближе к , чем к , то есть <.

Подходящие дроби дальнейших порядков располагаются таким же образом.

Итак, подходящие дроби нечетного порядка увеличиваются с ростом порядка, а подходящие дроби четного порядка убывают с ростом порядка; при этом все подходящие дроби нечетного порядка меньше всех подходящих дробей четного порядка, то есть <<…<<…<<…<< при любых k и .

Так как , то пары подходящих дробей , , … образуют стягивающуюся последовательность отрезков, которая должна иметь единственную общую точку, являющуюся общим пределом последовательностей , , … и , , …. Обозначим этот предел за , имеем , причем, очевидно, для любого k, то есть находится между любыми двумя соседними подходящими дробями.

Следовательно, подходящие дроби любой бесконечной непрерывной дроби имеют некоторый предел . Этот предел принимается в качестве значения бесконечной непрерывной дроби. Говорят, что бесконечная непрерывная дробь сходится к или представляет число . Можно записать =, подразумевая при этом, что =.

© 2011-2024 Контрольные работы по математике и другим предметам!