11. Дифференциалы первого и высших порядков
Дифференциалом первого порядка функции Называется главная, линейная относительно аргумента часть. Дифференциалом аргумента называется приращение аргумента:.
Дифференциал функции равен произведению ее производной на дифференциал аргумента:
.
Основные свойства дифференциала:
Где .
Если приращение Аргумента мало по абсолютной величине, то и .
Таким образом, дифференциал функции может применяться для приближенных вычислений.
Дифференциалом второго порядка функции называется дифференциал от дифференциала первого порядка: .
Аналогично: .
.
Если и - независимая переменная, то дифференциалы высших порядков вычисляются по формулам
.
Пример.
Найти дифференциалы первого и второго порядков функции
< Предыдущая | Следующая > |
---|