4.6. Проверка гипотез о виде распределения. Критерий согласия Пирсона

Одной из важных задач математической статистики является установление теоретического закона распределения случайной величины, характеризующей изучаемый признак по эмпирическому распределению, представляющему вариационный ряд. Предположение о виде закона распределения можно сделать по гистограмме или полигону (Рис. 4.3)

А)

Б)

В)

Рис. 4.3. Возможные виды гистограмм:
а) нормального, б) показательного, в) равномерного распределений

Например, по гистограмме (рис. 4.3, а)) можно сделать предположение о том, что генеральная совокупность распределена по нормальному закону.

Для проверки гипотез о виде распределения служат специальные критерии — Критерии согласия. Они отвечают на вопрос: согласуются ли результаты экспериментов с предположением о том, что генеральная совокупность имеет заданное распределение.

Проверим это предположение с помощью Критерия согласия Пирсона. В этом критерии мерой расхождения между гипотетическим (предполагаемым) и эмпирическим распределением служит статистика

Где N — объем выборки;

K — количество интервалов (групп наблюдений);

— количество наблюдений, попавших в J-й интервал;

— вероятность попадания в J-й интервал случайной величины, распределенной по гипотетическому закону.

Если предположение о виде закона распределения справедливо, то статистика Пирсона распределена по закону «хи-квадрат» с числом степеней свободы (R — число параметров распределения, оцениваемых по выборке):

Оцениваются неизвестные параметры с использованием теории точечных оценок (см. источник [3], гл.16 и раздел 3.8. настоящего пособия), некоторые оценки приведены в табл. 4.4.

Таблица 4.4. Оцениваемые параметры и их точечные оценки

Вид распределения

Оцениваемые параметры

Точечные оценки параметров

Здесь .

Количество интервалов K рекомендуется рассчитывать по формуле Старджеса где N — объем выборки. Длину I-го интервала принимают равной где —наибольшее, а — наименьшее значение в вариационном ряду.

Пример 4.8. Для среднего балла среди 30-ти групп (с точностью до сотых долей балла) получили выборку

3.7, 3.85, 3.7, 3.78, 3.6, 4.45, 4.2, 3.87, 3.33, 3.76, 3.75, 4.03, 3.8, 4.75, 3.25, 4.1, 3.55, 3.35, 3.38, 3.05, 3.56, 4.05, 3.24, 4.08, 3.58, 3.98, 3.4, 3.8, 3.06, 4.38. Проверить гипотезу о нормальном распределении среднего балла на уровне значимости .

Решение. Сгруппируем эту выборку. Наименьший средний балл равен 3.05, наибольший — 4.75. Интервал [3; 4.8] разобьем на 6 частей длиной , применяя формулу Старджеса (). Подсчитаем частоту (относительную частоту ) для каждого интервала и получим сгруппированный статистический ряд (табл. 4.5).

Таблица 4.5. Статистический ряд

Интервалы

[3;3.3)

[3.3;3.6)

[3.6;3.9)

[3.9;4.2)

[4.2;4.5)

[4.5;4.8)

Частоты

4

7

10

5

3

1

Относительные частоты

0.133

0.233

0.3

0.167

0.1

0.033

Сформулируем основную и альтернативную гипотезы.

— случайная величина X (средний балл) подчиняется нормальному закону с параметрами . Так как истинных значений параметров мы не знаем, возьмем их оценки, рассчитанные по выборке:

случайная величина X не подчиняется нормальному закону с данными параметрами.

Рассчитаем наблюдаемое значение статистики Пирсона. Эмпирические частоты уже известны (табл. 4.5), а для вычисления вероятностей (в предположении, что гипотеза справедлива) применим уже известную формулу (свойство В):

И таблицу функции Лапласа (приложение 1). Полученные результаты сведем в таблицу (табл. 4.6). Наблюдаемое значение статистики Пирсона равно

Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение , тем сильнее довод против основной гипотезы. Поэтому критическая область для этой статистики всегда правосторонняя: Её границу находим по таблицам распределения «хи-квадрат» (приложение 3) и заданным значениям (число интервалов), (параметры и оценены по выборке):

Наблюдаемое значение статистики Пирсона не попадает в критическую область: поэтому Нет оснований отвергать основную гипотезу.

Вывод: на уровне значимости 0.025 справедливо предположение о том, что средний балл имеет нормальное распределение.

Таблица 4.6. Сравнение наблюдаемых и ожидаемых частот

№ п/п

Интервалы группировки

Наблюдаемая частота

Вероятность попадания в J-й интервал

Ожидаемая частота

Слагаемые статистики Пирсона

1.

[3; 3.3)

4

0.101

3.032

0.309

2.

[3.3; 3.6)

7

0.225

6.761

0.008

3.

[3.6; 3.9)

10

0.295

8.79

0.166

4.

[3.9; 4.2)

5

0.222

6.665

0.416

5.

[4.2; 4.5)

3

0.098

2.946

0.001

6.

[4.5; 4.8)

1

0.025

0.758

0.077

30

0.965

28.95

© 2011-2024 Контрольные работы по математике и другим предметам!