3.12. Методы анализа больших систем, факторный анализ

Данный параграф является заключительным и более не будет возможности осветить еще одну особенность методов системного анализа, показать вам еще один путь к достижению профессионального уровня в области управления экономическими системами.

Уже ясно, что ТССА большей частью основывает свои практические методы на платформе математической статистики. Несколько упреждая ваш рабочий учебный план (курс математической статистики — предмет нашего сотрудничества в следующем семестре), обратимся к современным постулатам этой науки.

Общепризнанно, что в наши дни можно выделить три подхода к решению задач, в которых используются статистические данные.

· Алгоритмический подход, при котором мы имеем статистические данные о некотором процессе и по причине слабой изученности процесса его основная характеристика (например, эффективность экономической системы) мы вынуждены сами строить “разумные” правила обработки данных, базируясь на своих собственных представлениях об интересующем нас показателе.

· Аппроксимационный подход, когда у нас есть полное представление о связи данного показателя с имеющимися у нас данными, но неясна природа возникающих ошибок — отклонений от этих представлений.

· Теоретико-вероятностный подход, когда требуется глубокое проникновение в суть процесса для выяснения связи показателя со статистическими данными.

В настоящее время все эти подходы достаточно строго обоснованы научно и “снабжены” апробированными методами практических действий.

Но существуют ситуации, когда нас интересует не один, а несколько показателей процесса и, кроме того, мы подозреваем наличие нескольких, Влияющих на процесс, ВоздействийФакторов, которые являются не наблюдаемыми, скрытыми или Латентными.

Наиболее интересным и полезным в плане понимания сущности Факторного анализа — метода решения задач в этих ситуациях, является пример использования наблюдений при эксперименте, который ведет природа, Ни о каком планировании здесь не может идти речи — нам приходится довольствоваться Пассивным экспериментом.

Удивительно, но и в этих “тяжелых” условиях ТССА предлагает методы выявления таких факторов, отсеивания слабо проявляющих себя, оценки значимости полученных зависимостей показателей работы системы от этих факторов.

Пусть мы провели по N наблюдений за каждым из K Измеряемых показателей эффективности некоторой экономической системы и данные этих наблюдений представили в виде матрицы (таблицы).

Матрица исходных данных E[n·k] {3-26}

E 11

E12

E1i

E1k

E 21

E22

E2i

E2k

E j1

Ej2

Eji

Ejk

E n1

En2

Eni

Enk

Пусть мы предполагаем, что на эффективность системы влияют и другие — ненаблюдаемые, но легко интерпретируемые (объяснимые по смыслу, причине и механизму влияния) величины — факторы.

Сразу же сообразим, что чем больше N и чем меньше таких число факторов M (а может их и нет вообще!), Тем больше надежда оценить их влияние на интересующий нас показатель E.

Столь же легко понять необходимость условия m < k, Объяснимого на простом примере аналогии — если мы исследуем некоторые предметы с использованием всех 5 человеческих чувств, то наивно надеяться на обнаружение более пяти “новых”, легко объяснимых, но неизмеряемых признаков у таких предметов, даже если мы “испытаем” очень большое их количество.

Вернемся к исходной матрице наблюдений E[n·K] И отметим, что перед нами, по сути дела, совокупности по N наблюдений над каждой из K случайными величинами E1, E2, … E k. Именно эти величины “подозреваются” в связях друг с другом — или во взаимной коррелированности.

Из рассмотренного ранее метода оценок таких связей следует, что мерой разброса случайной величины E I служит ее дисперсия, определяемая суммой квадратов всех зарегистрированных значений этой величины S(Eij)2 И ее средним значением (суммирование ведется по столбцу).

Если мы применим замену переменных в исходной матрице наблюдений, т. е. вместо Ei j будем использовать случайные величины

Xij = , {3-27}

То мы преобразуем исходную матрицу в новую

X[n·K] {3-28}

X 11

X12

X1i

X1k

X 21

X22

X2i

X2k

X j1

Xj2

Xji

Xjk

X n1

Xn2

Xni

Xnk

Отметим, что все элементы новой матрицы X[n·K] окажутся безразмерными, нормированными величинами и, если некоторое значение Xij Составит, к примеру, +2, то это будет означать только одно - в строке J наблюдается отклонение от среднего по столбцу i на два среднеквадратичных отклонения (в большую сторону).

Выполним теперь следующие операции.

· Просуммируем квадраты всех значений столбца 1 и разделим результат на (n - 1) — мы получим дисперсию (меру разброса) случайной величины X1 , т. е. D1. Повторяя эту операцию, мы найдем таким же образом дисперсии всех наблюдаемых (но уже нормированных) величин.

· Просуммируем произведения соответствующих строк (от j =1 до j = n) для столбцов 1,2 и также разделим на (n -1). То, что мы теперь получим, называется Ковариацией C12 Случайных величин X1 , X2 И служит мерой их статистической связи.

· Если мы повторим предыдущую процедуру для всех пар столбцов, то в результате получим еще одну, квадратную матрицу C[k·K], которую принято называть Ковариационной.

Эта матрица имеет на главной диагонали дисперсии случайных величин XI, а в качестве остальных элементов — ковариации этих величин ( I =1…k).

Ковариационная матрица C[k·k] {3-29}

D1

C12

C13

C1k

C21

D2

C23

C2k

Cj1

Cj2

Cji

Cjk

Cn1

Cn2

Cni

Dk

Если вспомнить, что связи случайных величин можно описывать не только ковариациями, но и коэффициентами корреляции, то в соответствие матрице {3-29} можно поставить матрицу парных коэффициентов корреляции или Корреляционную матрицу

R [k·k] {3-30}

1

R12

R13

R1k

R21

1

R23

R2k

Rj1

Rj2

Rji

Rjk

Rn1

Rn2

Rni

1

В которой на диагонали находятся 1, а внедиагональные элементы являются обычными коэффициентами парной корреляции.

Так вот, пусть мы полагали наблюдаемые переменные EI независящими друг от друга, т. е. ожидали увидеть матрицу R[k·k] диагональной, с единицами в главной диагонали и нулями в остальных местах. Если теперь это не так, то наши догадки о наличии латентных факторов в какой-то мере получили подтверждение.

Но как убедиться в своей правоте, оценить достоверность нашей гипотезы — о наличии хотя бы одного латентного фактора, как оценить степень его влияния на основные (наблюдаемые) переменные? А если, тем более, таких факторов несколько — то как их проранжировать по степени влияния?

Ответы на такие практические вопросы призван давать факторный анализ. В его основе лежит все тот же “вездесущий” метод статистического моделирования (по образному выражению В. В.Налимова — Модель вместо теории).

Дальнейший ход анализа при выяснению таких вопросов зависит от того, какой из матриц мы будем пользоваться. Если матрицей ковариаций C[k·k], то мы имеем дело с Методом главных компонент, если же мы пользуемся только матрицей R[k·k], То мы используем Метод факторного анализа в его “чистом” виде.

Остается разобраться в главном — что позволяют оба эти метода, в чем их различие и как ими пользоваться. Назначение обоих методов одно и то же — установить сам факт наличия латентных переменных (факторов), и если они обнаружены, то получить Количественное описание их влияния на основные переменные Ei.

Ход рассуждений при выполнении поиска Главных компонент заключается в следующем. Мы предполагаем наличие некоррели-рованных переменных Zj ( j=1…k), каждая из которых представляется нам комбинацией основных переменных (суммирование по i =1…k):

ZJ = S AJ i ·X I {3-31}

И, кроме того, обладает дисперсией, такой что

D(Z1) ³ D(Z2) ³³ D(ZK).

Поиск коэффициентов AJ i (их называют весом j-й компонеты в содержании I-й переменной) сводится к решению матричных уравнений и не представляет особой сложности при использовании компьютерных программ. Но суть метода весьма интересна и на ней стоит задержаться.

Как известно из векторной алгебры, диагональная матрица [2·2] может рассматриваться как описание 2-х точек (точнее — вектора) в двумерном пространстве, а такая же матрица размером [k·k]Как описание K точек k-мерного пространства.

Так вот, замена реальных, хотя и нормированных переменных XI на точно такое же количество переменных Z J означает не что иное, как поворот k Осей многомерного пространства.

“Перебирая” поочередно оси, мы находим вначале ту из них, где дисперсия вдоль оси наибольшая. Затем делаем пересчет дисперсий для оставшихся k-1 Осей и снова находим “ось-чемпион” по дисперсии и т. д.

Образно говоря, мы заглядываем в куб (3-х мерное пространство) по очереди по трем осям и вначале ищем то направление, где видим наибольший “туман” (наибольшая дисперсия говорит о наибольшем влиянии чего-то постороннего); затем “усредняем” картинку по оставшимся двум осям и сравниваем разброс данных по каждой из них — находим “середнячка” и “аутсайдера”. Теперь остается решить систему уравнений — в нашем примере для 9 переменных, чтобы отыскать матрицу коэффициентов (весов) A[k·k].

Если коэффициенты AJ i найдены, то можно вернуться к основным переменным, поскольку доказано, что они однозначно выражаются в виде (суммирование по j=1…k)

X I = S AJi·Z J . {3-32}

Отыскание матрицы весов A[k·K] Требует использования ковариационной матрицы и корреляционной матрицы.

Таким образом, Метод главных компонент отличается прежде все тем, что дает всегда единственное решение задачи. Правда, трактовка этого решения своеобразна.

· Мы решаем задачу о наличии ровно стольких факторов, сколько у нас наблюдаемых переменных, т. е. вопрос о нашем согласии на меньшее число латентных факторов невозможно поставить;

· В результате решения, теоретически всегда единственного, а практически связанного с громадными вычислительными трудностями при разных физических размерностях основных величин, мы получим ответ примерно такого вида — фактор такой-то (например, привлекательность продавцов при анализе дневной выручки магазинов) занимает третье место по степени влияния на основные переменные.

Этот ответ обоснован — дисперсия этого фактора оказалась третьей по крупности среди всех прочих. Всё… Больше ничего получить в этом случае нельзя. Другое дело, что этот вывод оказался нам полезным или мы его игнорируем — это наше право решать, как использовать системный подход!

Несколько иначе осуществляется исследование латентных переменных в случае применения собственно Факторного анализа. Здесь каждая реальная переменная рассматривается также как линейная комбинация ряда факторов FJ, но в несколько необычной форме

X i = S B ji · Fj + D i. {3-33} причем суммирование ведется по j=1…m, т. е. по каждому фактору.

Здесь коэффициент BJi принято называть Нагрузкой на J-й фактор со стороны I-й переменной, а последнее слагаемое в {3-33} рассматривать как помеху, случайное отклонение для Xi. Число факторов M вполне может быть меньше числа реальных переменных N и ситуации, когда мы хотим оценить влияние всего одного фактора (ту же вежливость продавцов), здесь вполне допустимы.

Обратим внимание на само понятие “латентный”, скрытый, непосредственно не измеримый фактор. Конечно же, нет прибора и нет эталона вежливости, образованности, выносливости и т. п. Но это не мешает нам самим “измерить” их — применив соответствующую шкалу для таких признаков, разработав тесты для оценки таких свойств по этой шкале и применив эти тесты к тем же продавцам. Так в чем же тогда “ненаблюдаемость”? А в том, что в процессе эксперимента (обязательно) массового мы не можем непрерывно сравнивать все эти признаки с эталонами и нам приходится брать предварительные, усредненные, полученные совсем не в “рабочих” условиях данные.

Можно отойти от экономики и обратиться к спорту. Кто будет спорить, что результат спортсмена при прыжках в высоту зависит от фактора — “сила толчковой ноги”. Да, это фактор Можно измерить и в обычных физических единицах (ньютонах или бытовых килограммах), но когда?! Не во время же прыжка на соревнованиях!

А ведь именно в это, Рабочее время фиксируются статистические данные, накапливается материал для исходной матрицы.

Несколько более сложно объяснить сущность самих процедур факторного анализа простыми, элементарными понятиями (по мнению некоторых специалистов в области факторного анализа — вообще невозможно). Поэтому постараемся разобраться в этом, используя достаточно сложный, но, к счастью, доведенный в практическом смысле до полного совершенства, аппарат векторной или матричной алгебры.

До того как станет понятной необходимость в таком аппарате, рассмотрим так называемую основную теорему факторного анализа. Суть ее основана на представлении модели факторного анализа {3-33} в матричном виде

X [k·1] = B [k·m] · F [m·1] + D [k·1] {3-34}

И на последующем доказательстве истинности выражения

R [k·k] = B [k·m] · B*[m·k], {3-35}

Для “идеального” случая, когда невязки D Пренебрежимо малы.

Здесь B*[m·K] Это та же матрица B [k·M], но преобразованная особым образом (транспонированная).

Трудность задачи отыскания матрицы нагрузок на факторы очевидна — еще в школьной алгебре указывается на бесчисленное множество решений системы уравнений, если число уравнений больше числа неизвестных. Грубый подсчет говорит нам, что нам понадобится найти K·M неизвестных элементов матрицы нагрузок, в то время как только около k2 / 2 известных коэффициентов корреляции. Некоторую “помощь” оказывает доказанное в теории факторного анализа соотношение между данным коэффициентом парной корреляции (например R12) и набором соответствующих нагрузок факторов:

R12 = B11 · B21 + B12 · B22 + … + B1m · B2m. {3-36}

Таким образом, нет ничего удивительного в том утверждении, что Факторный анализ (а, значит, и Системный анализ в современных условиях) — больше Искусство, чем наука. Здесь менее важно владеть “навыками” и крайне важно понимать как мощность, так и ограниченные возможности этого метода.

Есть и еще одно обстоятельство, затрудняющее профессиональную подготовку в области факторного анализа — необходимость быть профессионалом в “технологическом” плане, в нашем случае это, конечно же, экономика.

Но, с другой стороны, стать экономистом высокого уровня вряд ли возможно, не имея хотя бы представлений о возможностях анализировать и эффективно управлять экономическими системами на базе решений, найденных с помощью факторного анализа.

Не следует обольщаться вульгарными обещаниями популяризаторов факторного анализа, не следует верить мифам о его всемогущности и универсальности. Этот метод “на вершине” только по одному показателю — своей сложности, как по сущности, так и по сложности практической реализации даже при “повальном” использовании компьютерных программ. К примеру, есть утверждения о преимуществах метода главных компонент — дескать, этот метод точнее расчета нагрузок на факторы. По этому поводу имеется одна острота известного итальянского статистика Карло Джинни, она в вольном пересказе звучит примерно так: “ Мне надо ехать в Милан, и я куплю билет на миланский поезд, хотя поезда на Неаполь ходят точнее и это подтверждено надежными статистическими данными. Почему? Да потому, что мне надо в Милан…”.

© 2011-2024 Контрольные работы по математике и другим предметам!