20.1. Графический метод. Постановка задачи

Наиболее простым и наглядным методом линейного про­граммирования является графический метод. Он применяется для решения задач ЛП с двумя переменными, заданными в не­канонической форме, и многими переменными в канонической форме при условии, что они содержат не более двух свободных переменных.

С геометрической точки зрения в задаче линейного про­граммирования ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.

Для нахождения экстремального значения целевой функ­ции при графическом решении задач ЛП используют вектор L() на плоскости Х1ОХ2, который обозначим . Этот вектор показывает направление наискорейшего изменения це­левой функции, он равен

Где Е1 и Е2 — единичные векторы по осям OX1 и ОX2 соответ­ственно; таким образом, = (∂L/∂х1, ∂L/∂х2). Координатами вектора являются коэффициенты целевой функции L().

© 2011-2024 Контрольные работы по математике и другим предметам!