17.1.2. Классическое определение вероятности
Назовем каждый из возможных результатов испытания Элементарным событием, или Исходом. Те элементарные исходы, которые интересуют нас, называются Благоприятными Событиями.
Определение 3. Отношение числа благоприятствующих событию А элементарных исходов к общему числу равновозможных несовместных элементарных исходов, образующих полную группу, называется Вероятностью события А.
Вероятность события А обозначается Р(А). Понятие вероятности является одним из основных в теории вероятностей. Данное выше определение является классическим. Из него вытекают некоторые свойства.
Свойство 1. Вероятность достоверного события равна единице.
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число:
Следовательно, вероятность любого события удовлетворяет неравенству
Отметим, что современные курсы теории вероятностей основаны на теоретико-множественном подходе, в котором элементарные события являются точками пространства элементарных событий Ω; при этом событие А отождествляется с подмножеством элементарных исходов, благоприятствующих этому событию, А Ω.
Приведем примеры непосредственного вычисления вероятностей.
Пример 4. В коробке лежит 10 шаров: 6 белых и 4 черных. Найти вероятность того, что из пяти взятых наугад шаров будет 4 белых.
Решение. Найдем число благоприятных исходов: число способов, которыми можно взять 4 белых шара из 6 имеющихся, равно C = C = . = 15. Общее число исходов определяется числом сочетаний из 10 по 5: C = 252. Согласно определению 3 искомая вероятность Р = 15/252 ≈ 0,06.
Пример 5. Какова вероятность того, что при заполнении карточки спортивной лотереи "6 из 36" будет угадано 4 номера?
Решение. Общее число исходов равно C = 1947792. Число благоприятных исходов равно С = 15. Отсюда искомая вероятность равна 7,7 ∙ 10-6.
Пример 6. В ящике находится 10 стандартных и 5 нестандартных деталей. Какова вероятность, что среди наугад взятых 6 деталей будет 4 стандартных и 2 нестандартных?
Решение. Общее число исходов равно С. Число благоприятных исходов определяется произведением СС, где первый сомножитель соответствует числу вариантов изъятия из ящика 4-х стандартных деталей из 10, а второй — числу вариантов изъятия из ящика 2-х нестандартных деталей из пяти. Отсюда следует, что искомая вероятность равна
< Предыдущая | Следующая > |
---|