01. Задача о диете (упрощенный вариант)

Предположим для определенности, что необходимо составить самый дешевый рацион питания цыплят, содержащий необходимое количество определенных питательных веществ (для простоты, тиамина Т и ниацина Н).

Таблица 8.1

Исходные данные в задаче об оптимизации смеси

Содержание в 1 унции К

Содержание в 1 унции С

Потребность

Вещество Т

0,10 мг

0,25 мг

1,00 мг

Вещество Н

1,00 мг

0,25 мг

5,00 мг

Калории

110,00

120,00

400,00

Стоимость 1 унции, в центах

3,8

4,2

Пищевая ценность рациона (в калориях) должна быть не менее заданной. Пусть для простоты смесь для цыплят изготавливается из двух продуктов - К и С. Известно содержание тиамина и ниацина в этих продуктах, а также питательная ценность К и С (в калориях). Сколько К и С надо взять для одной порции куриного корма, чтобы цыплята получили необходимую им дозу веществ Н и Т и калорий (или больше), а стоимость порции была минимальна? Исходные данные для расчетов приведены в Табл. 8.1.

Задача линейного программирования имеет вид:

3,8K+4,2Cð min

0,10K+0,25C≥1,00

1,00K+0,25C≥5,00

110K+120C≥400,00

K≥0

C≥0

Ее графическое решение представлено на Рис. 8.1

 графическое решение задачи об оптимизации смеси


Рис. 8.41. Графическое решение задачи об оптимизации смеси

На рис. 8.4 ради облегчения восприятия четыре прямые обозначены номерами (1) - (4). Прямая (1) описывается уравнением 1,00K+0,25C=5,00 (ограничение по веществу Н). Она проходит, как и показано на рисунке, через точки (5, 0) на оси абсцисс и (0, 20) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (1) или на ней, в отличие от ранее рассмотренных случаев в предыдущей производственной задаче линейного программирования.

Прямая (2) - это прямая 110K+120C=400,00 (ограничение по калориям). Обратим внимание, что в области неотрицательных С она расположена всюду ниже прямой (1). Действительно, это верно при K=0, прямая (1) проходит через точку (0, 20), а прямая (2) - через расположенную ниже точку (0, 400/120). Точка пересечения двух прямых находится при решении системы уравнений

1,00K+0,25C=5,00

110K+120C=400,00

Из первого уравнения K=5-0,25C. Подставим во второе:
110(5-0,25C)+120C=400, откуда 550-27,5C+120C=400. Следовательно, 150=-92,5C , т. е. решение достигается при отрицательном С. Это и означает, что при всех положительных С прямая (2) лежит ниже прямой (1). Значит, если выполнено ограничение по Н, то обязательно выполнено и ограничение по калориям. Мы столкнулись с новым явлением - некоторые ограничения с математической точки зрения могут оказаться лишними. С экономической точки зрения они необходимы, отражают существенные черты постановки задачи, но в данном случае внутренняя структура задачи оказалась такова, что ограничение по калориям не участвует в формировании допустимой области параметров и нахождении решения.

Прямая (4) - это прямая 0,1K+0,25C=1 (ограничение по веществу Т). Она проходит, как и показано на рисунке, через точки (10, 0) на оси абсцисс и (0, 4) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (4) или на ней, как и для прямой (1).

Следовательно, область допустимых значений параметров (К, С) является неограниченной сверху. Из всей плоскости она выделяется осями координат (лежит в первом квадранте) и прямыми (1) и (4) (лежит выше этих прямых, а также включает граничные отрезки). Область допустимых значений параметров, т. е. точек (К, С), можно назвать "неограниченным многоугольником". Минимум целевой функции 3.8K+4,2C может достигаться только в вершинах этого "многоугольника". Вершин всего три. Это пересечения с осями абсцисс (10, 0) и ординат (0, 20) прямых (1) и (4) (в каждом случае из двух пересечений берется то, которое удовлетворяет обоим ограничениям). Третья вершина - это точка А пересечения прямых (1) и (4), координаты которой находятся при решении системы уравнений

0,10K+0,25C=1,00

1,00K+0,25C=5,00

Из второго уравнения K=5-0,25C, из первого
0,1(5-0,25C)+0,25C=5,00=0,25C=0,5+0,225C=1, откуда C=0,5/0,225=20/9 и K=5-5/9=40/9. Итак, A=(20/9,40/9).

Прямая (3) на Рис. 8.5 - это прямая, соответствующая целевой функции 3,8K+4,2C. Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А, через которую и проходит прямая (3). Следовательно, минимум равен 3,8X40/9+4,2X20/9=236/9. Задача об оптимизации смеси полностью решена.

Двойственная задача, построенная по ранее описанным правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи):

3,8K+4,2Cð min W1+5W2+400W3ð max

0,10K+0,25C ≥1,00 0,1W1+1,10W2+110W3≤3,8

1,00K+0,25C ≥5,00 0,25W1+0,25W2+120W3≤4,2

110K+120C ≥400,00 W1≥0

K ≥0 W2≥0

C ≥0 W3≥0

Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т. е. оба числа равны 236/9. Интерпретация двойственных переменных: W1 - "стоимость" единицы вещества Т, а W2 - "стоимость" единицы вещества Н, измеренные "по их вкладу" в целевую функцию. При этом W3=0, поскольку ограничение на число калорий никак не участвует в формировании оптимального решения. Итак, W1,W2,W3 - это т. н. объективно обусловленные оценки (по Л. В. Канторовичу) ресурсов (веществ Т и Н, калорий).

© 2011-2024 Контрольные работы по математике и другим предметам!