31. Поток векторного поля. Определение потока векторного поля
Рассмотрим векторное поле , где проекции - непрерывные функции в некоторой области (V). Возьмем некоторую гладкую (кусочно гладкую) двустороннюю ориентированную поверхность (S) (то есть двустороннюю поверхность с выбранным на ней направлением нормали).
Определение. Потоком П векторного поля через двустороннюю ориентированную поверхность (S) называется поверхностный интеграл первого рода по поверхности (S):
. (1.3)
Здесь - орт нормали к выбранной стороне (S); Ds – элемент площади поверхности (S).
Замечание. В случае замкнутой поверхности ее ориентируют, направляя нормаль изнутри области (V) наружу. Сторона с положительным направлением нормали называется положительной стороной поверхности.
Для потока можно дать следующие записи через поверхностные интегралы первого и второго рода :
(1.3¢)
Где , , - то есть - проекции площадки на плоскости Oyz, Oxz, Oxy соответственно.
Пример. Вычислить поток векторного поля - радиус-вектор точки ) через полную поверхность прямого кругового цилиндра с высотой H и радиусом основания R (см. рис.1).
|
< Предыдущая | Следующая > |
---|