11.3. Три неразрешимых спора
В основе другого знаменитого парадокса лежит небольшое происшествие, случившееся две с лишним тысячи лет назад и не забытое до сих пор.
У знаменитого софиста Протагора, жившего в V в. до новой эры, был ученик по имени Еватл, обучавшийся праву. По заключенному между ними договору Еватл должен был заплатить за обучение лишь в том случае, если выиграет свой первый судебный процесс. Если же он этот процесс проиграет, то вообще не обязан платить. Однако, закончив обучение, Еватл не стал участвовать в процессах. Это длилось довольно долго, терпение учителя иссякло, и он подал на своего ученика в суд. Таким образом, для Еватла это был первый процесс; от него ему уже не удалось бы отвертеться. Свое требование Протагор обосновал так: «Каким бы ни было решение суда, Еватл должен будет заплатить мне. Он либо выиграет этот свой первый процесс, либо проиграет. Если выиграет, то заплатит в силу нашего договора. Если проиграет, то заплатит согласно решению суда».
Судя по всему, Еватл был способным учеником, поскольку он ответил Протагору: «Действительно, я либо выиграю процесс, либо проиграю его. Если выиграю, решение суда освободит меня от обязанности платить. Если решение суда будет не в мою пользу, значит, я проиграл свой первый процесс и не заплачу в силу нашего договора».
Озадаченный таким оборотом дела, Протагор посвятил этому спору с Еватлом особое сочинение «Тяжба о плате». К сожалению, оно, как и большая часть написанного Протагором, не дошло до нас. Тем не менее нужно отдать должное Протагору, сразу почувствовавшему за простым судебным казусом проблему, заслуживающую специального исследования.
Немецкий философ Г. В. Лейбниц, юрист по образованию, также отнесся к этому спору всерьез. В своей докторской диссертации «Исследование о запутанных казусах в праве» он пытался показать, что все случаи, даже самые запутанные, подобно тяжбе Протагора и Еватла, должны находить правильное разрешение на основе здравого смысла. По мысли Лейбница, суд должен отказать Протагору за несвоевременностью предъявления иска, но оставить, однако, за ним право потребовать уплаты денег Еватлом позже, а именно после первого выигранного им процесса.
Было предложено много других решений данного парадокса.
Ссылались, в частности, на то, что решение суда должно иметь большую силу, чем частная договоренность двух лиц. На это можно ответить, что, не будь этой договоренности, какой бы незначительной она ни казалась, не было бы ни суда, ни его решения. Ведь суд должен вынести свое решение именно по ее поводу и на ее основе.
Обращались также к общему принципу, что всякий труд, а значит и труд Протагора, должен быть оплачен. Но ведь известно, что этот принцип всегда имел исключения, тем более в рабовладельческом обществе. К тому же он просто неприложим к конкретной ситуации спора: ведь Протагор, гарантируя высокий уровень обучения, сам отказывался принимать плату в случае неудачи в первом процессе своего ученика.
Иногда рассуждают так. И Протагор и Еватл — оба правы частично, и ни один из них в целом. Каждый из них учитывает только половину возможностей, выгодную для себя. Полное или всестороннее рассмотрение открывает четыре возможности, из которых только половина выгодна для одного из спорящих. Какая из этих возможностей реализуется, это решит не логика, а жизнь. Если приговор судей будет иметь большую силу, чем договор, Еватл должен будет платить, только если проиграет процесс, то есть в силу решения суда. Если же частная договоренность будет ставиться выше, чем решение судей, то Протагор получит плату только в случае проигрыша процесса Еватлу, то есть в силу договора с Протагором.
Эта апелляция к «жизни» окончательно все запутывает. Чем, если не логикой, могут руководствоваться судьи в условиях, когда все относящиеся к делу обстоятельства совершенно ясны? И что это будет за «руководство», если Протагор, претендующей на оплату через суд, добьется ее, лишь проиграв процесс?
Впрочем, и решение Лейбница, кажущееся поначалу убедительным, только немногим лучший совет суду, чем неясное противопоставление «логики» и «жизни». В сущности, Лейбниц предлагает изменить задним числом формулировку договора и оговорить, что первым с участием Еватла судебным процессом, исход которого решит вопрос об оплате, не должен быть суд по иску Протагора. Мысль глубокая, но не имеющая отношения к конкретному суду. Если бы в исходной договоренности была такая оговорка, необходимость в судебном разбирательстве вообще бы не возникла.
Если под решением данного затруднения понимать ответ на вопрос, должен Еватл платить Протагору или нет, то все эти, как и все другие мыслимые решения, являются, конечно, несостоятельными. Они представляют собой не более чем уход от существа спора, являются, так сказать, уловками и хитростями в безвыходной и неразрешимой ситуации, так как ни здравый смысл, ни какие-то общие принципы, касающиеся социальных отношений, не способны разрешить спор.
Невозможно выполнить вместе договор в его первоначальной форме и решение суда, каким бы последнее ни было. Для доказательства этого достаточно простых средств логики. С помощью этих же средств можно также показать, что договор, несмотря на его вполне невинный внешний вид, внутренне противоречив. Он требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение и вместе с тем не платить.
В Древней Греции пользовался большой популярностью рассказ о крокодиле и матери.
«Крокодил выхватил у женщины, стоявшей на берегу реки, ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил:
— Твое несчастье растрогало меня, и я дам тебе шанс получить назад ребенка. Угадай, отдам я его тебе или нет. Если ответишь правильно, я верну ребенка. Если не угадаешь, я его не отдам.
Подумав, мать ответила:
— Ты не отдашь мне ребенка.
— Ты его не получишь, — заключил крокодил. — Ты сказала либо правду, либо неправду. Если то, что я не отдам ребенка, — правда, я не отдам его, так как иначе сказанное не будет правдой. Если сказанное — неправда, значит, ты не угадала, и я не отдам ребенка по уговору.
Однако матери это рассуждение не показалось убедительным.
— Но ведь если я сказала правду, то ты отдашь мне ребенка, как мы и договорились. Если же я не угадала, что ты отдашь ребенка, то ты должен мне его отдать, иначе сказанное мною не будет неправдой».
Кто прав: мать или крокодил? К чему обязывает крокодила данное им обещание? К тому, чтобы отдать ребенка, или, напротив, чтобы не отдавать его?
И к тому и к другому одновременно. Это обещание внутренне противоречиво и, таким образом, невыполнимо в силу законов логики.
Данный парадокс обыгрывается в «Дон Кихоте» М. Сервантеса. Санчо Панса сделался губернатором острова Баратария и вершит суд. Первым к нему является какой-то приезжий и говорит: «Сеньор, некое поместье делится на две половины многоводной рекой. Через эту реку переброшен мост, и тут же с краю стоит виселица и находится нечто вроде суда, в нем обыкновенно заседает четверо судей, и судят они на основании закона, изданного владельцем реки, моста и всего поместья. Закон составлен таким образом: „Всякий проходящий по мосту через реку должен объявить под присягою: куда и зачем он идет. Кто скажет правду, тех пропускать, а кто солжет, тех без всякого снисхождения отправлять на виселицу и казнить". С того времени, когда этот закон был обнародован, многие успели пройти через мост, и как только судьи удостоверялись, что прохожие говорят правду, то пропускали их. Но однажды некий человек, приведенный к присяге, поклялся и сказал, что он пришел за тем, чтобы его вздернули вот на эту самую виселицу, и ни за чем другим. Эта клятва привела судей в недоумение, и они сказали: „Если позволить этому человеку беспрепятственно следовать дальше, это будет означать, что он нарушил клятву и согласно закону повинен смерти; если же его повесить, то ведь он клялся, что пришел только за тем, чтобы его вздернули на виселицу, следовательно, клятва его не ложна, и на основании того же самого закона надлежит пропустить его". Я вас спрашиваю, сеньор губернатор, что делать судьям с этим человеком, ибо они до сих пор недоумевают и колеблются.
Санчо предложил, пожалуй, не без хитрости: ту половину человека, которая сказала правду, пусть пропустят, а ту, которая соврала, пусть повесят, и таким образом правила перехода через мост будут соблюдены по всей форме».
Этот отрывок интересен в нескольких отношениях. Прежде всего, он является наглядной иллюстрацией того, что с описанным в парадоксе безвыходным положением вполне может столкнуться — и не в чистой теории, а на практике — если не реальный человек, то хотя бы литературный герой.
Выход, предложенный Санчо Пансой, не был, конечно, решением парадокса. Но это было именно то решение, к которому только и оставалось прибегнуть в его положении.
Когда-то Александр Македонский, вместо того чтобы развязать хитрый гордиев узел, чего еще никому не удалось сделать, просто разрубил его. Подобным же образом поступил и Санчо. Пытаться решить головоломку на ее собственных условиях было бесполезно — она попросту неразрешима. Оставалось отбросить эти условия и ввести свое.
Сервантес этим эпизодом явно осуждает непомерно формализованный, пронизанный духом схоластической логики масштаб средневековой справедливости. Но какими распространенными в его время — а это было около четырехсот лет назад — были сведения из области логики! Не только самому Сервантесу известен данный парадокс. Писатель находит возможным приписать своему герою, безграмотному крестьянину, способность понять, что перед ним неразрешимая задача!
И наконец, одна из современных перефразировок спора Протагора и Еватла.
Миссионер очутился у людоедов и попал как раз к обеду. Они разрешают ему выбрать, в каком виде его съедят. Для этого он должен произнести какое-нибудь высказывание с условием: если это высказывание окажется истинным, они его сварят, а если оно окажется ложным, его зажарят. Что следует сказать миссионеру?
Разумеется, он должен сказать: «Вы зажарите меня». Если его действительно зажарят, окажется, что он высказал истину и, значит, его надо сварить. Если же его сварят, его высказывание будет ложным и его следует зажарить. Выхода у людоедов не будет: из «зажарить» вытекает «сварить», и наоборот.
< Предыдущая | Следующая > |
---|