04.1. Понятие логического закона
Логические законы составляют основу человеческого мышления. Они определяют, когда из одних высказываний логически вытекают другие высказывания, и представляют собой тот невидимый железный каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь. Без логического закона нельзя понять, что такое логическое следование, а тем самым — что такое доказательство.
Правильное, или, как обычно говорят, логичное, мышление, — это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Отсюда понятна вся важность данных законов.
Однородные логические законы объединяются в логические системы, которые тоже обычно именуются «логиками». Каждая из них дает описание логической структуры определенного фрагмента, или типа, наших рассуждений.
Например, законы, описывающие логические связи высказываний, не зависящие от внутренней структуры последних, объединяются в систему, именуемую «логикой высказываний». Логические законы, определяющие связи категорических высказываний, образуют логическую систему, называемую «логикой категорических высказываний», или «силлогистикой», и т. д.
Логические законы объективны и не зависят от воли и сознания человека. Они не являются результатом соглашения между людьми, некоторой специально разработанной или стихийно сложившейся конвенции. Они не являются и порождением какого-то «мирового духа», как полагал когда-то Платон. Власть законов логики над человеком, их обязательная для правильного мышления сила обусловлена тем, что они представляют отображение в человеческом мышлении реального мира и многовекового опыта его познания и преобразования человеком.
Подобно всем иным научным законам, логические законы являются универсальными и необходимыми. Они действуют всегда и везде, распространяясь в равной мере на всех людей и на любые эпохи. Представители
1. Понятие логического закона
Разных наций и разных культур, мужчины и женщины, древние египтяне и современные полинезийцы с точки зрения логики своих рассуждений не отличаются друг от друга.
Присущая логическим законам необходимость в каком-то смысле даже более настоятельна и непреложна, чем природная, или физическая, необходимость. Невозможно даже представить, чтобы логически необходимое было иным. Если что-то противоречит законам природы и является физически невозможным, то никакой инженер, при всей его одаренности, не сумеет реализовать это. Но если нечто противоречит законам логики и является логически невозможным, то не только инженер — даже всемогущее существо, если бы оно вдруг появилось, не смогло бы воплотить это в жизнь.
Как уже говорилось ранее, в правильном рассуждении заключение вытекает из посылок с логической необходимостью, и общая схема такого рассуждения представляет собой логический закон.
Число схем правильного рассуждения (логических законов) бесконечно. Многие из этих схем известны нам из практики рассуждения. Мы применяем их интуитивно, не отдавая себе отчета, что в каждом правильно проведенном нами умозаключении используется тот или иной логический закон.
Прежде чем ввести общее понятие логического закона, приведем несколько примеров схем рассуждения, представляющих собой логические законы. Вместо переменных А, В, С, ., используемых обычно для обозначения высказываний, воспользуемся, как это делалось еще в античности, словами «первое» и «второе», заменяющими переменные.
«Если есть первое, то есть второе; есть первое; следовательно, есть Второе». Эта схема рассуждения позволяет от утверждения условного высказывания («Если есть первое, то есть второе») и утверждения его основания («Есть первое») перейти к утверждению следствия («Есть второе»). По этой схеме протекает, в частности, рассуждение: «Если лед нагревают, он тает; лед нагревают; следовательно, он тает».
Еще одна схема правильного рассуждения: «Либо имеет место первое, либо второе; есть первое; значит, нет второго». Посредством этой схемы от двух взаимоисключающих альтернатив и установления того, какая из них имеет место, осуществляется переход к отрицанию второй альтернативы. Например: «Либо Достоевский родился в Москве, либо он родился в Петербурге. Достоевский родился в Москве. Значит, неверно, что он родился в Петербурге». В американском вестерне «Хороший, плохой и злой» один отрицательный герой говорит другому: «Запомни, мир делится на две части: на тех, кто держит револьвер, и тех, кто копает. Револьвер сейчас у меня, так что бери лопату». Это рассуждение также опирается на указанную схему.
И последний предварительный пример логического закона, или общей схемы правильного рассуждения: «Имеет место первое или вто
Рое. Но первого нет. Значит, имеет место второе». Подставим вместо выражения «первое» высказывание «Сейчас день», а вместо «второго» — высказывание «Сейчас ночь». Из абстрактной схемы получаем рассуждение: «Сейчас день или сейчас ночь. Но неверно, что сейчас день. Значит, сейчас ночь».
Таковы некоторые простые схемы правильного рассуждения, иллюстрирующие понятие логического закона. Сотни и сотни подобных схем сидят у нас в голове, хотя мы и не осознаем этого. Опираясь на них, мы рассуждаем логично, или правильно.
Закон логики (логический закон) — выражение, включающее только логические постоянные и переменные вместо содержательных частей и являющееся истинным в любой области рассуждений.
Возьмем в качестве примера выражения, состоящего только из переменных и логических постоянных, выражение: «Если А, то В; значит, если не-А, то не-В». Логическими постоянными здесь являются пропозициональные связки «если, то» и «не». Переменные А и В представляют какие - то высказывания. Допустим, А — это высказывание «Имеется причина», а В — высказывание «Есть следствие». С данным конкретным содержанием получаем рассуждение: «Если имеется причина, то есть следствие; значит, если нет следствия, то нет и причины». Предположим, далее, что вместо А подставляется высказывание «Число делится на шесть», а вместо В — высказывание «Число делится на три». С этим конкретным содержанием на основе рассматриваемой схемы получаем рассуждение: «Если число делится на шесть, оно делится на три. Следовательно, если число не делится на три, оно не делится на шесть». Какие бы иные высказывания ни подставлялись вместо переменных А и В, если эти высказывания истинны, то и выводимое из них заключение будет истинным.
В логике обычно делается оговорка, что та область объектов, о которой ведется рассуждение и о которой говорят подставляемые в логический закон высказывания, не может быть пустой: в ней должен иметься хотя бы один предмет. В противном случае рассуждение по схеме, представляющей собой закон логики, может вести от истинных посылок к ложному заключению.
Например, из истинных посылок «Все слоны — животные» и «Все слоны имеют хобот» по закону логики вытекает истинное заключение «Некоторые животные имеют хобот». Но если область объектов, о которой идет речь, является пустой, следование закону логики не гарантирует истинного заключения при истинных посылках. Будем рассуждать по такой же схеме, но уже о золотых горах. Построим умозаключение: «Все золотые горы есть горы; все золотые горы — золотые; следовательно, некоторые горы — золотые». Обе посылки этого умозаключения истинны. Но его заключение «Некоторые горы — золотые» явно ложно: ни одной золотой горы не существует.
Таким образом, для рассуждений, опирающихся на закон логики, характерны две особенности:
• такие рассуждения всегда ведут от истинных посылок к истинному заключению;
• следствие вытекает из посылок с логической необходимостью. Логический закон принято называть также логической тавтологией. Логическая тавтология — выражение, остающееся истинным,
Независимо от того, о каких объектах идет речь, или «всегда истинное» выражение.
Например, все результаты подстановок в логический закон двойного отрицания «Если А, то неверно, что не-А» являются истинными высказываниями: «Если сажа черная, то неверно, что она не является черной», «Если человек дрожит от страха, то неверно, что он не дрожит от страха» и т. д.
Как уже говорилось, понятие логического закона непосредственно связано с понятием логического следования: заключение логически следует из принятых посылок, если оно связано с ними логическим законом. К примеру, из посылок «Если А, то В» и «Если В, то С» логически следует заключение «Если А, то С», поскольку выражение «Если А, то В, и если В, то С, то если А, то С» представляет собой логический закон, а именно закон транзитивности (переходности). Скажем, из посылок «Если человек отец, то он родитель» и «Если человек родитель, то он отец или мать» по этому закону вытекает следствие «Если человек отец, то он отец или мать».
Логическое следование — отношение между посылками и заключением умозаключения, общая схема которого представляет собой логический закон.
Поскольку связь логического следования опирается на логический закон, для нее характерны две особенности:
• логическое следование ведет от истинных посылок только к истинному заключению;
• заключение, следующее из посылок, вытекает из них с логической необходимостью.
Не все логические законы непосредственно определяют понятие логического следования. Имеются законы, описывающие другие логические связи: «и», «или», «неверно, что» и т. д. и только косвенно связанные с отношением логического следования. Таков, в частности, рассматриваемый далее закон противоречия: «Неверно, что произвольно взятое высказывание и его отрицание одновременно истинны». Этот закон характеризует логическое противоречие, и с понятием логического следования он связан лишь опосредствованно.
Современная логика исследует логические законы только как элементы систем, включающих бесконечные множества таких законов. Каждая
Из логических систем представляет собой абстрактную знаковую модель, дающую описание какого-то определенного фрагмента, или типа, наших рассуждений. Например, множество систем, объединяемых в рамках модальной логики, распадается на теорию логических модальностей, теорию физических модальностей, логику оценок, логику норм и др.
В традиционной логике в последний период ее существования широкое распространение получила концепция «расширенной» логики. Ее сторонники резко сдвинули центр тяжести логических исследований с изучения правильных способов рассуждения на разработку проблем теории познания, причинности, вероятностного рассуждения и т. д. В логику были введены темы, интересные и важные сами по себе, но не имеющие к ней прямого отношения. Собственно логическая проблематика отошла на задний план. Вытеснившие ее методологические проблемы трактовались, как правило, упрощенно, без учета сложной динамики научного познания.
С развитием современной логики это направление в логике, путающее ее с поверхностно понятой методологией и пронизанное психологизмом, постепенно захирело.
Одним из отголосков идей «расширенной» логики является, в частности, разговор о так называемых «основных» законах мышления, или «основных» законах логики, иногда возникающий и сейчас.
Согласно «широкой» трактовке логики основные законы — это наиболее очевидные из всех утверждений логики, являющиеся чем-то вроде аксиом этой науки. Они образуют как бы фундамент логики, на который опирается все ее здание. Сами же они ниоткуда не выводимы, да и не требуют никакой особой опоры в силу своей исключительной очевидности.
Под это крайне расплывчатое понятие «основных» законов можно подвести самые разнородные идеи. Обычно к таким законам относили закон противоречия, закон исключенного третьего, закон тождества. Нередко к ним добавлялся еще и так называемый «закон достаточного основания».
«Закон достаточного основания» вообще не является принципом логики — ни основным, ни второстепенным. Требование «достаточного основания» предполагает, что ничто не принимается просто так, на веру. В случае каждого утверждения следует указывать основания, в силу которых оно считается истинным. Разумеется, это никакой не закон логики.
Рассуждения «расширенной» логики об основных законах мышления только затемняли и запутывали проблему логических законов. Как показала современная логика, законов логики бесчисленное множество. Деление их на основные и не являющиеся основными лишено каких-либо ясных оснований.
Несостоятельна также подмена логических законов расплывчатыми методологическими советами. Никакого фундамента в виде короткого перечня основополагающих принципов в науке логике нет. В этом она не отличается от всех других научных дисциплин.
Есть еще один предрассудок, культивировавшийся «расширенной» логикой и доживший до наших дней. Это обсуждение законов логики в полном отрыве их от всех иных ее важных тем и понятий и даже в изоляции их друг от друга.
Логические законы интересны, конечно, и сами по себе. Но если они действительно являются важными элементами механизма мышления — а это, несомненно, так, — они должны быть неразрывно связаны с другими элементами этого механизма. И прежде всего с центральным понятием логики — понятием логического следования, и значит, с понятием доказательства.
Далее рассмотрим отдельные наиболее известные и часто употребляемые логические законы, а также некоторые системы таких законов.
< Предыдущая | Следующая > |
---|