03. Пример решения Заданий из раздела №1

Задание 1. Для данного определителя найти миноры и алгебраические дополнения элементов . Вычислить определитель : а) разложив его по элементам I-ой строки; б) разложив его по элементам J-го столбца; в) получив предварительно нули в I-ой строки.

I = 1, J = 2

Решение: 1. Находим миноры к элементам :

Алгебраические дополнения элементов соответственно равны:

2. а). Вычислим определитель, разложив его по элементам первой строки:

Б) Вычислим определитель, разложив его по элементам второго столбца:

В) Вычисли определитель , Получив предварительно нули в первой строке. Используем свойство определителей: определитель Не ИЗмеНиТся, ЕСлИ ко всЕМ эЛеМентам кАКой-либо строки (столбца) прибавить СоотВЕтстВУющие эЛеМЕНтЫ другой строки (столбца), умноженНЫе на одно И то же произвольное число. Умножим третий столбец определителя на 3 и прибавим к первому, затем умножим на (-2) и прибавим ко второму. Тогда в первой строке все элементы, кроме одного, будут нулями. Разложим полученный таким образом опредЕЛитель по элемЕНтам первой строки и вычислим его:

В опрЕДЕЛитЕЛе трЕТьЕГо порядка получили нули в ПеРвом столбце по свойству тому же свойству определителей.

Задание 2.

Даны две матрицы A и B. Найти: а) AB; б) BA; в) ; г) .

Решение: а) Произведение АВ имеет смысл, так как число столбцов матрицы А равно числу строк матрицы В. Находим матрицу С=АВ, элементы которой определяются по формуле . ИмеЕМ:

Б) Вычислим

ОчЕВидНО, что ;

В) Обратная матрица матрицы А имеет виД

,

Где - алгебраическое дополнение, -минор, т. е. определитель полученный из основного определителя вычёркивание i-строки, j-столбца.

,

Т. е. матрица A - Невырожденная, и, значит, существуЕТ матрица . Находим:

Тогда

;

Г) Проверка

;

Задание 3. Проверить совместность линейной системы уравнений и в случае совместности решить ее а) по формулам Крамера б) методом Гаусса.

Решение: Совместность данной системы проверим по теореме Кронекера - Капелли. С помощью элементарных преобразований найдем ранг матрицы

Данной системы и ранг расширенной матрицы

Для этого умножим первую строку матрицы В на (-2) и сложим со второй, затем умножим первую строку на (-3) и сложим с третьей, поменяем местами второй и третий столбцы. Получим

.

Следовательно, (т. е. числу неизвестных). Значит, исходная система совместна и имеет единственное решение.

А) По формулам Крамера

,

Где -главный определитель, который мы посчитаем, например, по правилу треугольника

,

Аналогично найдем

,

,

,

Находим: .

Б) Решим систему методом Гаусса. Исключим из второго и третьего уравнений. Для этого первое уравнение умножим на 2 и вычтем из второго, затем первое уравнение умножим на 3 и вычтем из третьего:

Из полученной системы находим .

Задание 4

Решить матричное уравнение

Пусть ,

решение матричного уравнения находим по формуле

Х=А -1В, где А -1 обратная матрица

- алгебраическое дополнение, где

- определитель, полученный из основного вычеркивание i-строки, j-столбца, - определитель матрицы.

Найдем обратную матрицу.

(-1)1+14=4

А12=(-1)1+23=-3

А21= (-1)2+12=-2

А22=(-1)2+21=1

DetA==1*4-2*3=4-6=-2

Итак,

Задание 5

Предприятие выпускает три вида продукции, используя сырье трёх видов: . Необходимые характеристики указаны в таблице .

Вид сырья

Нормы расхода сырья на изготовление одного вида продукции, усл. ед.

Расход сырья за один день, усл. ед.

Сапог

Кроссовок

Ботинок

S1

S2

S3

5

2

3

3

1

2

4

1

2

2700

900

1600

Найти ежедневный объем выпуска каждого вида продукции.

Решение: Пусть ежедневно фабрика выпускает x1 – единиц продукции первого вида, x2 - единиц продукции второго вида, x3 - единиц продукции третьего вида. Тогда в соответствии с расходом сырья каждого вида имеем систему.

Решаем систему линейных уравнений любым способом. Решим данную систему, например, методом Гаусса. Составим матрицу из коэффициентов стоящих перед неизвестными и из свободных членов.

Обнуляем первый столбец, кроме первого элемента

1. Первую строчку оставляем без изменения

2. Вместо второй записываем сумму первой, умноженной на -2 и второй, умноженной на 5

3. Вместо третьей записываем сумму первой, умноженной на -3 и третьей, умноженной на 5

Аналогично обнуляем второй столбец под элементом второй строки второго столбца

˜˜

Вернемся к системе

Т. е. фабрика выпускает 200- единиц продукции первого вида, 300- единиц продукции второго вида и 200- единиц продукции третьего вида.

Задание 6. Решить однородную систему линейных алгебраических

Уравнений.

Решение: Так как определитель системы

,

То система ИМЕЕт бЕСчисленное множество решений. Поскольку , , возьмем любые два уравнения системы (наПРИМЕР, ПЕрвое И второе) и найдем ее рЕШение. ИмЕеМ:

Так как определитель из коэффициентов при неизвестных и не равен нулю, то в качестве базисных нЕИзвестных ВОзьмЕМ и (хотя можно брать и другие пары нЕИзвЕСтных) И ПеРЕМЕСтим члЕНы с в правые частИ УравнЕНИЙ:

РЕШаЕМ пОСлЕдНюю систЕМу по формулам КрамЕРа :

Где

,

,

.

Отсюда находим, что Полагая , где KПроизвольный коэффициент пропорциональности (произвольная постоянная), получаем решение исходной сИСтЕМы: .

© 2011-2024 Контрольные работы по математике и другим предметам!