Лекция 08. Продолжение темы «Многочлены Жегалкина»

Теорема.

Любая булева функция представима в виде многочлена Жегалкина (МЖ).

Доказательство

1. Существование

F = ДНФ = F{&,V, NOT}

X V Y = XY+X+Y

NOT(X) = X+1

Из этого следует, что функция представима в виде МЖ.

2. Единственность

Сосчитаем МЖ

ЭК без отрицания 2n – 1 + 1

Всего разных многочленов Жегалкина 2N – 1, где N = 2n

Это число совпадает с числом разных булевых функций, отличных от нуля.

Отсюда следует, что любой булевой функции соответствует единственный многочлен Жегалкина. Теорема доказана полностью.

Классы функций. Замкнутые и незамкнутые классы. Получение констант и элементарных булевых функций из заданной системы функций

Определение. Функция называется линейной, если ее многочлен Жегалкина не содержит ни одной конъюнкции переменных.

Замкнутые классы функций.

Определение.

Пусть дан класс функций B (т. е. конечное или бесконечное множество функций),объединенных по общему признаку. Замыканием этого класса (обозначение – [B]) будем называть множество всех суперпозиций функций из класса B.

Класс B будем называть замкнутым, если его замыкание совпадает с ним самим.

B = [B]

Теорема 1

Класс всех линейных функций замкнут.

Доказательство.

Пусть L – класс линейных функций (так и будем обозначать в дальнейшем).

L = {a0+a1x1+a2x2+…+anxn}

Подставим вместо переменной x в одну из функций функцию y такого же вида.

Получим

L = [L].

Утверждение (теорема 2)

Необходимое условие линейности.

Если функция линейна и не равна некоторой постоянной, то на половине своих наборов она равна 1.

Если в векторе значений функции число 0 и 1 различно, то функция Обязательно Нелинейна, а если число нулей совпадает с числом единиц, то эта функция может быть линейной, а может быть и нелинейной. В таком случае, чтобы это проверить, нужно выписать для нее многочлен Жегалкина.

Функция называется самодвойственной, если двойственная к ней функция является самой этой функцией. F* = F.

S – класс всех самодвойственных функций.

Класс S является функционально замкнутым.

Доказательство следует из принципа двойственности.

У самодвойственной функции на противоположных наборах противоположны значения.

Функция называется монотонной, если из условия a £ b следует, что f(a) £ f(b).

Теорема.

Класс M монотонных функций замкнут.

Свойство.

У монотонных функций сокращенная ДНФ не содержит отрицаний переменных, то есть все простые импликанты не содержат отрицаний.

Другие замкнутые классы

T0 – константа 0 (класс функций, обращающихся на нулевом векторе в 0).

Т1 – константа 1 (класс функций, обращающихся на единичном векторе в 1)

Теорема

Классы Т0 и Т1 функционально замкнуты.

Лемма о несамодвойственной функции.

Если функция несамодвойственна, то путем подстановки вместо аргументов переменной X или Not(X) можно получить константу.

011 – нарушена самодвойственность

F(not(x),x, x) = const = 1 при любом x.

001 – нарушена самодвойственность

Если 0, то х с отрицанием, если 1, то без отрицания.

Доказательство _ _ _ _ _ _ _ _

F Ï S Þ $a : F*(a) ¹ F(a) Þ F*(a) = F(a)Þ F(a) = F(a) Þ F(a) = F(a)

F(x) = {x1a, x2a2, … xnan}

F(0) = {0a, 0a2, … 0an}

Путем подстановки получаем, что f(x) = const.

Лемма о немонотонной функции

Путем подстановки вместо аргументов-констант и переменной х можно получить Not(X).

000 £ 001

F(000) = 1 F(001) = 0

F(00X) = NOT(X)

F(100) = 1

F(110) = 0

100 < 110

F(1,x,0) = NOT(X)

Лемма о нелинейной функции

Если F(X) нелинейна, то из нее путем подстановки вместо аргументов-констант переменных (X, Y, Not X, Not Y) иожно получить: конъюнкцию этих переменных, дизъюнкцию этих переменных, отрицание конъюнкции, отрицание дизъюнкции.

F = 1 + x1+x3+x1x3+x1x2x3 = x1x3(1+x2) +x3+x1+1

F(x1,0,x3) = x1x3+x3+1

___

F(x0y) = (xy)


© 2011-2024 Контрольные работы по математике и другим предметам!