40. Уравнение прямой, проходящей через две точки
Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки:
Если какой - либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.
На плоскости записанное выше уравнение прямой упрощается:
Если х1 ¹ х2 и х = х1, еслих1 = х2.
Дробь = k называется Угловым коэффициентом прямой.
Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).
Применяя записанную выше формулу, получаем:
Уравнение прямой по точке и угловому коэффициенту.
Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
И обозначить , то полученное уравнение называется Уравнением прямой с угловым коэффициентом K.
< Предыдущая | Следующая > |
---|