26. Свойства векторного произведения векторов

1) ;

2) , если ïï или = 0 или = 0;

3) (m= ´(m) = m(´);

4) ´(+ ) = ´+ ´ ;

5) Если заданы векторы (Xa, Ya, Za) и (Xb, Yb, Zb) в декартовой прямоугольной системе координат с единичными векторами , то

´=

6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах И .

Пример. Найти векторное произведение векторов И

.

= (2, 5, 1); = (1, 2, -3)

.

При использовании компьютерной версии “Курса высшей математики” можно запустить программу, которая может найти скалярное и векторное произведения двух векторов. Для запуска программы дважды щелкните на значке:


В открывшемся окне программы введите координаты векторов и нажмите Enter. После получения скалярного произведения нажмите Enter еще раз – будет получено векторное произведение.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3),

С(0, 1, 0).

(ед2).

Пример. Доказать, что векторы , И компланарны.

, т. к. векторы линейно зависимы, то они компланарны.

Пример. Найти площадь параллелограмма, построенного на векторах , если

(ед2).

© 2011-2024 Контрольные работы по математике и другим предметам!