_107. Элементы математической логики

Математическая логика – разновидность формаьной логики, т. е. науки, которая изучает умозаключения с точки зрения их формального строения.

Определение. Высказыванием называется предложение, к которому возможно применить понятия истинно или ложно.

В математической логике не рассматривается сам смысл высказываний, определяется только его истинность или ложность, что принято обозначать соответственно И или Л.

Понятно, что истинные и ложные высказывания образуют соответствующие множества. С помощью простых высказываний можно составлять более сложные, соединяя простые высказывания союзами “и”, “или”.

Таким образом, операции с высказываниями можно описывать с помощью некоторого математического аппарата.

Вводятся следующие логические операции (связки) над высказываниями

1) Отрицание. Отрицанием высказывания Р называется высказывание, которое истинно только тогда, когда высказывание Р ложно.

Обозначается Р или .

Соответствие между высказываниями определяется таблицами истинности. В нашем случае эта таблица имеет вид:

P

Р

И

Л

Л

И

2) Конъюнкция. Конъюнкцией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинны оба высказывания.

Обозначается P&Q или РÙQ.

P

Q

P&Q

И

И

И

И

Л

Л

Л

И

Л

Л

Л

Л

3) Дизъюнкция. Дизъюнкцией двух высказываний P и Q называется высказывание, ложное тогда и только тогда, когда оба высказывания ложны.

Обозначается PÚQ.

 

Q

PÚQ

И

И

И

И

Л

И

Л

И

И

Л

Л

Л

4) Импликация. Импликацией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда высказывание Р истинно, а Q – ложно.

Обозначается PÉQ (или РÞQ). Высказывание Р называется посылкой импликации, а высказывание Q – следствием.

 

Q

PÞQ

И

И

И

И

Л

Л

Л

И

И

Л

Л

И

5) Эквиваленция. Эквиваленцией двух высказываний P и Q называется высказывание, истинное тогда и только тогда, когда истинности высказываний совпадают.

Обозначается Р~Q или РÛQ.

 

Q

P~Q

И

И

И

И

Л

Л

Л

И

Л

Л

Л

И

С помощью этих основных таблиц истинности можно составлять таблицы истинности сложных формул.

Пример. С помощью таблиц истинности проверить, являются ли эквивалентными формулы j и y.

Составим таблицы истинности для каждой формулы:

P

R

(pÙr)

И

И

Л

И

И

И

Л

Л

Л

И

Л

И

И

Л

Л

Л

Л

И

Л

Л

P

R

И

И

Л

Л

Л

И

И

Л

Л

И

И

И

Л

И

И

Л

И

И

Л

Л

И

И

И

И

Данные формулы не являются эквивалентными.

Пример. С помощью таблиц истинности проверить, являются ли эквивалентными формулы j и y.

Составим таблицы истинности для заданных формул.

P

Q

R

PÛq

(pÛq)Úr

И

И

И

И

И

И

И

Л

И

И

И

Л

И

Л

И

И

Л

Л

Л

Л

Л

И

И

Л

И

Л

И

Л

Л

Л

Л

Л

И

И

И

Л

Л

Л

И

И

P

Q

R

PÞq

QÞp

(pÞq)Ú(qÞp)

(pÞq)Ú(qÞp)Úr

И

И

И

И

И

И

И

И

И

Л

И

И

И

И

И

Л

И

Л

И

И

И

И

Л

Л

Л

И

И

И

Л

И

И

И

Л

И

И

Л

И

Л

И

Л

И

И

Л

Л

И

И

И

И

И

Л

Л

Л

И

И

И

И

Из составленных таблиц видно, что данные формулы не равносильны.

© 2011-2024 Контрольные работы по математике и другим предметам!