59. Интеграл Фурье
Пусть функция F(X) на каждом отрезке [-L,L], где L – любое число, кусочно – гладкая или кусочно – монотонная, кроме того, F(X) – абсолютно интегрируемая функция, т. е. сходится несобственный интеграл
![]()
Тогда функция F(X) разлагается в ряд Фурье:
![]()

Если подставить коэффициенты в формулу для f(x), получим:


Переходя к пределу при L®¥, можно доказать, что
и

Обозначим ![]()
При L®¥ DUn ®0.

Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу

Тогда ![]()
- Двойной интеграл Фурье.
Окончательно получаем:

- представление функции f(x) Интегралом Фурье.
Двойной интеграл Фурье для функции f(x) можно представить в комплексной форме:
![]()
| < Предыдущая | Следующая > |
|---|