14. Линейные неоднородные дифференциальные уравнения. Метод Бернулли
(Якоб Бернулли (1654-1705) – швейцарский математик.)
Для интегрирования линейных неоднородных уравнений (Q(X)¹0) применяются в основном два метода: метод Бернулли и метод Лагранжа.
Суть метода заключается в том, что искомая функция представляется в виде произведения двух функций .
При этом очевидно, что - дифференцирование по частям.
Подставляя в исходное уравнение, получаем:
Далее следует важное замечание – т. к. первоначальная функция была представлена нами в виде произведения, то каждый из сомножителей, входящих в это произведение, может быть произвольным, выбранным по нашему усмотрению.
Например, функция может быть представлена как
и т. п.
Таким образом, можно одну из составляющих произведение функций выбрать так, что выражение .
Таким образом, возможно получить функцию U, проинтегрировав, полученное соотношение как однородное дифференциальное уравнение по описанной выше схеме:
Для нахождения второй неизвестной функции V подставим поученное выражение для функции U В исходное уравнение с учетом того, что выражение, стоящее в скобках, равно нулю.
Интегрируя, можем найти функцию V:
; ;
Т. е. была получена вторая составляющая произведения , которое и определяет искомую функцию.
Подставляя полученные значения, получаем:
Окончательно получаем формулу:
, С2 - произвольный коэффициент.
Это соотношение может считаться решением неоднородного линейного дифференциального уравнения в общем виде по способу Бернулли.
( Ларганж Жозеф Луи (1736-1813) - французский математик, през. Берлинской АН,
Поч. чл. Пет. АН (1776)).
Метод Лагранжа решения неоднородных линейных дифференциальных уравнений еще называют методом Вариации произвольной постоянной.
Вернемся к поставленной задаче:
Первый шаг данного метода состоит в отбрасывании правой части уравнения и замене ее нулем.
Далее находится решение получившегося однородного дифференциального уравнения:
.
Для того, чтобы найти соответствующее решение неоднородного дифференциального уравнения, будем считать постоянную С1 некоторой функцией от х.
Тогда по правилам дифференцирования произведения функций получаем:
Подставляем полученное соотношение в исходное уравнение
Из этого уравнения определим переменную функцию С1(х):
Интегрируя, получаем:
Подставляя это значение в исходное уравнение, получаем:
.
Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли.
При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.
Далее рассмотрим примеры решения различных дифференциальных уравнений различными методами и сравним результаты.
Пример. Решить уравнение
Сначала приведем данное уравнение к стандартному виду:
Применим полученную выше формулу:
Определение. Уравнением Бернулли Называется уравнение вида
Где P и Q – функции от Х или постоянные числа, а N – постоянное число, не равное 1.
Для решения уравнения Бернулли применяют подстановку , с помощью которой, уравнение Бернулли приводится к линейному.
Для этого разделим исходное уравнение на Yn.
Применим подстановку, учтя, что .
Т. е. получилось линейное уравнение относительно неизвестной функции z.
Решение этого уравнения будем искать в виде:
Пример. Решить уравнение
Разделим уравнение на Xy2:
Полагаем
.
Полагаем
Произведя обратную подстановку, получаем:
Пример. Решить уравнение
Разделим обе части уравнения на
Полагаем
Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:
Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с учетом того, что:
Получаем:
Применяя обратную подстановку, получаем окончательный ответ:
Уравнения в полных дифференциалах (тотальные).
Определение. Дифференциальное уравнение первого порядка вида:
Называется Уравнением в полных дифференциалах, если левая часть этого уравнения представляет собой полный дифференциал некоторой функции
Интегрирование такого уравнения сводится к нахождению функции U, после чего решение легко находится в виде:
Таким образом, для решения надо определить:
1) в каком случае левая часть уравнения представляет собой полный дифференциал функции U;
2) как найти эту функцию.
Если дифференциальная форма Является полным дифференциалом некоторой функции U, то можно записать:
Т. е. .
Найдем смешанные производные второго порядка, продифференцировав первое уравнение по У, а второе – по Х:
Приравнивая левые части уравнений, получаем Необходимое и достаточное условие того, что левая часть дифференциального уравнения является полным дифференциалом. Это условие также называется Условием тотальности.
Теперь рассмотрим вопрос о нахождении собственно функции U.
Проинтегрируем равенство :
Вследствие интегрирования получаем не постоянную величину С, а некоторую функцию С(у), т. к. при интегрировании переменная У полагается постоянным параметром.
Определим функцию С(у).
Продифференцируем полученное равенство по У.
Откуда получаем:
Для нахождения функции С(у) необходимо проинтегрировать приведенное выше равенство. Однако, перед интегрированием надо доказать, что функция С(у) не зависит от Х. Это условие будет выполнено, если производная этой функции по Х равна нулю.
Теперь определяем функцию С(у):
Подставляя этот результат в выражение для функции U, получаем:
Тогда общий интеграл исходного дифференциального уравнения будет иметь вид:
Следует отметить, что при решении уравнений в полных дифференциалах не обязательно использовать полученную формулу. Решение может получиться более компактным, если просто следовать методу, которым формула была получена.
Пример. Решить уравнение
Проверим условие тотальности:
Условие тотальности выполняется, следовательно, исходное дифференциальное уравнение является уравнением в полных дифференциалах.
Определим функцию U.
;
Итого,
Находим общий интеграл исходного дифференциального уравнения:
Уравнения вида Y = F(Y’) И X = F(Y’).
Решение уравнений, не содержащих в одном случае аргумента Х, а в другом – функции У, ищем в параметрической форме, принимая за параметр производную неизвестной функции.
Для уравнения первого типа получаем:
Делая замену, получаем:
В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными.
Общий интеграл в параметрической форме представляется системой уравнений:
Исключив из этой системы параметр Р, получим общий интеграл и не в параметрической форме.
Для дифференциального уравнения вида X = F(Y’) с помощью той же самой подстановки и аналогичных рассуждений получаем результат:
( Алекси Клод Клеро (1713 – 1765) французский математик
Ин. поч. член Петерб. АН )
Определение. Уравнением Лагранжа Называется дифференциальное уравнение, линейное относительно Х и У, коэффициенты которого являются функциями от Y’.
Для нахождения общего решение применяется подстановка P = Y’.
Дифференцируя это уравнение, c учетом того, что , получаем:
Если решение этого (линейного относительно Х) уравнения есть То общее решение уравнения Лагранжа может быть записано в виде:
Определение. Уравнением Клеро Называется уравнение первой степени (т. е. линейное) относительно функции и аргумента вида:
Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа.
С учетом замены , уравнение принимает вид:
Это уравнение имеет два возможных решения:
или
В первом случае:
Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий.
Во втором случае решение в параметрической форме выражается системой уравнений:
Исключая параметр Р, получаем второе решение F(x, y) = 0. Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением.
Это решение будет являться особым интегралом. ( См. Особое решение.)
Далее рассмотрим примеры решения различных типов дифференциальных уравнений первого порядка.
Пример. Решить уравнение с заданными начальными условиями.
Это линейное неоднородное дифференциальное уравнение первого порядка.
Решим соответствующее ему однородное уравнение.
Для неоднородного уравнения общее решение имеет вид:
Дифференцируя, получаем:
Для нахождения функции С(х) подставляем полученное значение в исходное дифференциальное уравнение:
Итого, общее решение:
C учетом начального условия Определяем постоянный коэффициент C.
Окончательно получаем:
Для проверки подставим полученный результат в исходное дифференциальное уравнение: верно
Ниже показан график интегральной кривой уравнения.
Пример. Найти общий интеграл уравнения .
Это уравнение с разделяющимися переменными.
Общий интеграл имеет вид:
Построим интегральные кривые дифференциального уравнения при различных значениях С.
С = - 0,5 С = -0,02 С = -1 С = -2
С = 0,02 С = 0,5 С = 1 С = 2
Пример. Найти решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.
Это уравнение с разделяющимися переменными.
Общее решение имеет вид:
Найдем частное решение при заданном начальном условии У(0) = 0.
Окончательно получаем:
Пример. Решить предыдущий пример другим способом.
Действительно, уравнение может быть рассмотрено как линейное неоднородное дифференциальное уравнение.
Решим соответствующее ему линейное однородное уравнение.
Решение неоднородного уравнения будет иметь вид:
Тогда
Подставляя в исходное уравнение, получаем:
Итого
С учетом начального условия у(0) = 0 получаем
Как видно результаты, полученные при решении данного дифференциального уравнения различными способами, совпадают.
При решении дифференциальных уравнений бывает возможно выбирать метод решения, исходя из сложности преобразований.
Пример. Решить уравнение С начальным условием у(0) = 0.
Это линейное неоднородное уравнение. Решим соответствующее ему однородное уравнение.
Для линейного неоднородного уравнения общее решение будет иметь вид:
Для определения функции С(х) найдем производную функции У и подставим ее в исходное дифференциальное уравнение.
Итого
Проверим полученное общее решение подстановкой в исходное дифференциальное уравнение.
(верно)
Найдем частное решение при у(0) = 0.
Окончательно
Пример. Найти решение дифференциального уравнения
С начальным условием у(1) = 1.
Это уравнение может быть преобразовано и представлено как уравнение с разделенными переменными.
С учетом начального условия:
Окончательно
Пример. Решить дифференциальное уравнение с начальным условием у(1) = 0.
Это линейное неоднородное уравнение.
Решим соответствующее ему однородное уравнение.
Решение неоднородного уравнения будет иметь вид:
Подставим в исходное уравнение:
Общее решение будет иметь вид:
C учетом начального условия у(1) = 0:
Частное решение:
Пример. Найти решение дифференциального уравнения с начальным условием у(1) = е.
Это уравнение может быть приведено к виду уравнения с разделяющимися переменными с помощью замены переменных.
Обозначим:
Уравнение принимает вид:
Получили уравнение с разделяющимися переменными.
Сделаем обратную замену:
Общее решение:
C учетом начального условия у(1) = е:
Частное решение:
Второй способ решения.
Получили линейное неоднородное дифференциальное уравнение. Соответствующее однородное:
Решение исходного уравнения ищем в виде:
Тогда
Подставим полученные результаты в исходное уравнение:
Получаем общее решение:
Пример. Решить дифференциальное уравнение с начальным условием у(1)=0.
В этом уравнении также удобно применить замену переменных.
Уравнение принимает вид:
Делаем обратную подстановку:
Общее решение:
C учетом начального условия у(1) = 0:
Частное решение:
Второй способ решения.
Замена переменной:
Общее решение:
< Предыдущая | Следующая > |
---|