11. Уравнения, приводящиеся к однородным
Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным.
Это уравнения вида .
Если определитель то переменные могут быть разделены подстановкой
Где a и b - решения системы уравнений
Пример. Решить уравнение
Получаем
Находим значение определителя .
Решаем систему уравнений
Применяем подстановку в исходное уравнение:
Заменяем переменную при подстановке в выражение, записанное выше, имеем:
Разделяем переменные:
Переходим теперь к первоначальной функции у и переменной х.
Итого, выражение является общим интегралом исходного дифференциального уравнения.
В случае если в исходном уравнении вида определитель то переменные могут быть разделены подстановкой
Пример. Решить уравнение
Получаем
Находим значение определителя
Применяем подстановку
Подставляем это выражение в исходное уравнение:
Разделяем переменные:
Далее возвращаемся к первоначальной функции у и переменной х.
Таким образом, мы получили общий интеграл исходного дифференциального уравнения.
< Предыдущая | Следующая > |
---|