33. Производная функции, заданной параметрически

Пусть

Предположим, что эти функции имеют производные и функция x = j(t) имеет обратную функцию t = Ф(х).

Тогда функция у = y(t) может быть рассмотрена как сложная функция y = y[Ф(х)].

Т. к. Ф(х) – обратная функция, то

Окончательно получаем:

Таким образом, можно находить производную функции, не находя непосредственной зависимости у от х.

Пример. Найти производную функции

Способ 1: Выразим одну переменную через другую , тогда

Способ 2: Применим параметрическое задание данной кривой: .

X2 = a2cos2t;

© 2011-2024 Контрольные работы по математике и другим предметам!