28. Схема исследования функций
Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:
1) Область существования функции.
Это понятие включает в себя и область значений и область определения функции.
2) Точки разрыва. (Если они имеются).
3) Интервалы возрастания и убывания.
4) Точки максимума и минимума.
5) Максимальное и минимальное значение функции на ее области определения.
6) Области выпуклости и вогнутости.
7) Точки перегиба.(Если они имеются).
8) Асимптоты.(Если они имеются).
9) Построение графика.
Применение этой схемы рассмотрим на примере.
Пример. Исследовать функцию И построить ее график.
Находим область существования функции. Очевидно, что Областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).
В свою очередь, видно, что прямые х = 1, х = -1 являются Вертикальными асимптотами кривой.
Областью значений Данной функции является интервал (-¥; ¥).
Точками разрыва функции являются точки х = 1, х = -1.
Находим Критические точки.
Найдем производную функции
Критические точки: x = 0; x = -; x = ; x = -1; x = 1.
Найдем вторую производную функции
.
Определим выпуклость и вогнутость кривой на промежутках.
-¥ < x < -, y¢¢ < 0, кривая выпуклая
- < x < -1, y¢¢ < 0, кривая выпуклая
-1 < x < 0, y¢¢ > 0, кривая вогнутая
0 < x < 1, y¢¢ < 0, кривая выпуклая
1 < x < , y¢¢ > 0, кривая вогнутая
< x < ¥, y¢¢ > 0, кривая вогнутая
Находим промежутки Возрастания И Убывания функции. Для этого определяем знаки производной функции на промежутках.
-¥ < x < -, y¢ > 0, функция возрастает
- < x < -1, y¢ < 0, функция убывает
-1 < x < 0, y¢ < 0, функция убывает
0 < x < 1, y¢ < 0, функция убывает
1 < x < , y¢ < 0, функция убывает
< x < ¥, y¢¢ > 0, функция возрастает
Видно, что точка х = - является точкой Максимума, а точка х = является точкой Минимума. Значения функции в этих точках равны соответственно 3/2 и -3/2.
Про вертикальные Асимптоты было уже сказано выше. Теперь найдем Наклонные асимптоты.
Итого, уравнение наклонной асимптоты – y = x.
Построим График функции:
При использовании компьютерной версии “Курса высшей математики” возможно запустить программу, которая проводит полное исследование функций по приведенной выше схеме. Достаточно ввести функцию, программа выведет подробный отчет о результатах исследования по каждому пункту.
Для запуска программы дважды щелкните по значку:
Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.
< Предыдущая | Следующая > |
---|