49. Линейная регрессия (ЛР). Метод наименьших квадратов

Линейная регрессия занимает в технике и теории корреляции особое место. Она обусловлена двумерным нормальным законом распределения СВ Х и Y:

, где

А0 и а1 – коэффициенты регрессии,

Х – независимая случайная величина

Параметры уравнения регрессии определяются методом наименьших квадратов, предложенным Лагранжем и Гауссом, который сводится к следующему.

Строятся квадратичные формы:

Xi – измеренное значение переменной,

E - истинное или теоретическое значение этой величины.

Требуется, чтобы сумма квадратов отклонений измеренных значений относительно истинных была минимальна.

В случае линейной регрессии за теоретическое значение принимается значение , т. е. ищется такая прямая линия с коэффициентами а0 и а1, чтобы сумма квадратов отклонений от этой линии была минимальна.

,

Уi – измеренное значение переменной Y.

Минимальные квадратичные формы получают, приравнивая к нулю ее производные по а0 и а1:

© 2011-2024 Контрольные работы по математике и другим предметам!