14.3. Задачи
Задача 1. Система банка «Автодор» позволяет клиенту совершать некоторые банковские операции, не выходя из машины. Утром в рабочие дни прибывает в среднем 24 клиента в час. Прибытие клиентов описывается законом Пуассона. Время обслуживания распределено экспоненциально со средней скоростью обслуживания 36 клиентов в час.
Определите следующие характеристики системы:
Среднее число клиентов в очереди;
Среднее число клиентов в системе;
Среднее время ожидания;
Среднее время, которое клиент проводит в системе.
Вопросы:
1. Сколько клиентов в среднем прибывает за 5 мин?
2. Каковы вероятности того, что ровно 0, 1, 2, 3 клиента прибудут за 5 мин?
3. Если в течение 5 мин прибывает более 3 клиентов, то возникает проблема перегруженности системы. Какова вероятность возникновения такой проблемы?
4. Каковы вероятности того, что время обслуживания составит: а) не более 1 мин; б) не более 2 мин; в) более 2 мин?
5. Какова вероятность того, что прибывающему клиенту придется ждать обслуживания?
6. Каковы вероятности того, что в системе находится: а) 0 клиентов; б) 3 клиента; в) более 3 клиентов?
Задача 2. Автосервис решил нанять механика для того, чтобы он менял старые покрышки на новые. На это место есть два кандидата. Один из них имеет ограниченный опыт и может быть нанят за 7 долл. в час. Ожидается, что этот механик сможет обслуживать 3 клиента в час. Другой механик более опытен, он в состоянии обслужить 4 клиента в час, но его можно нанять на работу за 10 долл. в час. Клиенты прибывают со скоростью 2 клиента в час. Компания оценивает издержки по ожиданию клиентами своей очереди в 15 долл. в час. Предполагая пуассоновское распределение прибытия и экспоненциальное — времени обслуживания, определите:
Среднее время, которое клиент проводит в очереди;
Среднюю длину очереди;
Среднее время, которое клиент проводит в системе обслуживания;
Среднее число клиентов в системе обслуживания;
Вероятность того, что система обслуживания окажется свободной при условии найма одного или другого механика.
Вопросы:
1. Какого механика следует нанять, чтобы обеспечить меньшие совокупные издержки?
2. Каковы минимальные совокупные издержки?
Задача 3. «У Петра» — маленький магазин с одним прилавком. Предположим, что покупатели прибывают в магазин по закону Пуассона со средней скоростью 15 покупателей в час. Время обслуживания распределено экспоненциально, средняя скорость обслуживания — 20 покупателей в час. Рассчитайте:
Среднее время, которое покупатель проводит в очереди;
Среднюю длину очереди;
Среднее время, которое покупатель проводит в магазине;
Среднее число покупателей в магазине;
Вероятность того, что в магазине не окажется покупателей.
Владелец магазина установил, что затраты, связанные с ожиданием, выражаются в снижении спроса и равны 2 долл. за один час ожидания. Он решил ограничить среднее время ожидания обслуживания пятью минутами. Можно попытаться достигнуть этого, реализовав одну из следующих альтернатив:
А. Нанять продавца, который бы выполнял заказ, в то время как кассир рассчитывается с покупателем (часовая оплата каждого — 3 долл.). Это позволит увеличить среднюю скорость обслуживания до 30 покупателей в час.
В. Нанять второго кассира (часовая оплата — 3 долл.), тем самым создав в магазине двухканальную очередь (средняя скорость обслуживания — 20 клиентов в час для каждого работника).
Вопрос: Какую альтернативу следует выбрать?
Задача 4. В верхнем течении Волги построена новая станция по обслуживанию речных судов. Суда прибывают по закону Пуассона со средней скоростью 5 судов в час. Время обслуживания распределено экспоненциально со средней скоростью обслуживания 10 судов в час. В среднем издержки по простою речного судна составляют 100 долл./ч, а издержки по обслуживанию дока — 75 долл./ч.
Вопросы:
1. Какова вероятность того, что док будет пуст?
2. Каково среднее число судов в очереди?
3. Каково среднее время ожидания обслуживания?
4. Каково среднее время пребывания в доке?
5. Администрация станции рассматривает возможность введения в строй еще одного дока с той же скоростью обслуживания. Есть ли в этом необходимость?
Задача 5. «Гибкий путь» — небольшой супермаркет в одном из районов города. Покупатели прибывают в магазин по закону Пуассона со средней скоростью 15 человек в час. На выходе из супермаркета стоит один кассовый аппарат, и обслуживает его один кассир. Время, затраченное на расчеты с клиентом, распределено экспоненциально и в среднем равно 3 мин.
Владелец магазина решил приобрести второй кассовый аппарат в целях сокращения времени, проводимого клиентами в очереди, для чего необходимо нанять второго кассира. Часовая оплата кассира — 2 долл. Затраты, связанные с ожиданием в очереди, приводят к снижению потребительского спроса и оцениваются в среднем в 3 долл. за час.
Вопросы:
1. Есть ли необходимость в приобретении второго кассового аппарата с точки зрения экономического эффекта? (Амортизационные отчисления от приобретенного кассового аппарата и затраты на его обслуживание пренебрежимо малы, поэтому в расчетах их можно не учитывать.)
2. Приобретение третьего кассового аппарата приведет к дальнейшему сокращению очереди, но есть ли в этом необходимость с точки зрения экономического эффекта?
Задача 6. Предприятие быстрого питания обслуживает клиентов, прибывающих на автомашинах по закону Пуассона со средней скоростью 24 машины в час. Время обслуживания распределено экспоненциально. Клиенты делают свой заказ, а затем отъезжают, чтобы оплатить и получить заказанное. Каждый час, который клиент проводит в очереди, оценивается в 25 долл. Оплата служащим равна 6,5 долл. в час. Помимо зарплаты для обеспечения работы каждого из каналов надо тратить 20 долл. в час.
Рассматриваются следующие возможные конфигурации системы:
А. Одноканальная система с одним служащим, выполняющим заказы и принимающим оплату. Среднее время обслуживания клиента — 2 мин.
В. Одноканальная система с одним служащим, выполняющим заказ, и другим служащим, принимающим оплату. Среднее время обслуживания — 1,25 мин.
С. Двухканальная система с двумя служащими, каждый из которых выполняет заказы и принимает оплату. Среднее время обслуживания — 2 мин для каждого из служащих.
Для каждой конфигурации системы определите:
Вероятность того, что в системе нет машин;
Среднее число машин в очереди;
Среднее время ожидания обслуживания;
Среднее время пребывания в системе;
Среднее число машин в системе;
Вероятность того, что вновь прибывшей машине придется ждать.
Вопрос: Какой из вариантов требует меньших затрат?
Задача 7. Механики компании «Автосервис» прибывают на главный склад за запчастями со средней скоростью 4 механика в минуту. Сейчас на складе один работник. Каждый механик в среднем находится на складе 4 мин. Найдите:
Среднее число клиентов в системе;
Среднее время обслуживания одного клиента в системе;
Среднее число клиентов в очереди.
Опыт использования двух работников на складе показал, что время ожидания механиком своей очереди снизилось. Определите для двухканальной системы:
Среднее число клиентов в системе;
Среднее время обслуживания одного клиента в системе;
Среднее число клиентов в очереди.
Механик получает 1200 руб. в час, а работник отдела запчастей — 720 руб. в час.
Вопрос: Какая из двух систем (одноканальная или двухканальная) более экономична?
Задача 8. Автоматическая мойка машин может обслужить 10 машин в час. Машины прибывают по закону Пуассона со средней скоростью 24 автомашины за 8-часовой рабочий день. Система одноканальная.
Вопросы:
1. Чему равно среднее число автомобилей в очереди?
2. Чему равно среднее время ожидания?
3. Какую часть рабочего времени система занята?
Задача 9. Компания «Жалюзи на дом» решила довести число своих машин до 8. Президент компании интересуется, стоит ли в этом случае нанимать на работу второго механика в помощь к одному имеющемуся. Средняя скорость прибытия на ремонт равна 0,05 раза в час для каждой машины, средняя скорость обслуживания — 0,5 машины в час. Каждый механик получает 20 долл. в час, а стоимость простоя машины составляет 80 долл. в час.
Рассчитайте следующие операционные характеристики, если компания оставляет единственного механика:
Вероятность того, что все машины работают и механик простаивает;
Среднее число ожидающих ремонта машин;
Среднее число машин в системе (машины в очереди и на обслуживании);
Среднее время ожидания начала ремонта;
Среднее время нахождения в системе (ожидание и ремонт).
Используя компьютерную программу, рассчитайте те же характеристики для случая с двумя механиками.
Вопрос: Сколько механиков следует нанять с экономической точки зрения?
Задача 10. В распоряжении магазина находится 10 грузовиков. Грузовики прибывают в магазин в случайном порядке в течение дня для погрузки-разгрузки. Каждый грузовик прибывает на обслуживание дважды за 8-часовой рабочий день. Средняя скорость обслуживания — 4 грузовика в час. Поток грузовиков описывается пуассоновским распределением, время обслуживания — экспоненциальным. Определите:
Вероятность того, что ни один грузовик не ожидает погрузки-разгрузки;
Среднее число грузовиков в очереди;
Среднее число грузовиков у магазина (грузовики в очереди и на погрузке-разгрузке);
Среднее время ожидания в очереди.
Вопрос: Каковы часовые издержки по функционированию системы, если в час издержки на кажцый грузовик равны 50 долл., а на работы с грузовиками — 30 долл.?
< Предыдущая | Следующая > |
---|