12.1. Примеры
Пример 1. Сколько производить?
Предприятие располагает ресурсами двух видов сырья и рабочей силы, необходимыми для производства двух видов продукции. Затраты ресурсов на изготовление одной тонны каждого продукта, прибыль, получаемая предприятием от реализации тонны продукта, а также запасы ресурсов указаны в следующей таблице:
Стоимость одной тонны каждого вида сырья определяется следующими зависимостями: (9 + 0,0088R1) тыс. руб. для сырья 1 и (5 - 0,0086R2) тыс. руб. для сырья 2, где R1 и R2 — затраты сырья на производство продукции. Стоимость одного часа трудозатрат определяется зависимостью (1 - 0,0002R, где R — затраты времени на производство продукции.
Вопросы:
1. Сколько продукта 1 следует производить для того, чтобы обеспечить максимальную прибыль?
2. Сколько продукта 2 следует производить для того, чтобы обеспечить максимальную прибыль?
3. Какова максимальная прибыль?
Решение. Пусть X1 — объем выпуска продукта 1 (в тоннах), Х2 — объем выпуска продукта 2 (в тоннах). Тогда задача может быть описана в виде следующей модели нелинейного программирования:
При использовании программы GINO исходную информацию для решения этой задачи представляем в следующем виде:
Получаем следующий результат:
Ответы: 1. 16,67т. 2.13,89т. 3. 507,407 тыс. руб.
Пример 2. Формирование портфеля ценных бумаг.
Клиент поручил брокерской конторе купить для него на 1 млн руб. акции трех известных ему компаний. Сделка заключается на год. Клиент заинтересован, с одной стороны, в максимизации средней прибыли на вложенный капитал, а с другой — в минимизации риска, поскольку прибыль, получаемая в конце года от акции каждой компании, является величиной случайной. Известно, что чем прибыльнее акция, тем выше связанный с ней риск, поэтому названные критерии являются противоречивыми. Клиенту это обстоятельство разъяснили и попросили его указать относительную значимость («вес») критериев. Клиент, будучи человеком осторожным, высказал пожелание, чтобы риск учитывался с весом втрое большим, чем прибыль. Получив такие указания, сотрудники брокерской конторы сформулировали следующую модель нелинейного программирования:
Где ХJ — объем средств, затраченных на покупку акций типа J (тыс. руб.);
MJ — математическое ожидание процента прибыли от вложения 1 тыс. руб. в акции типа J;
SJj — дисперсия указанного выше процента прибыли;
SIj — ковариация между процентами прибыли от вложения 1 тыс. руб. в акции типа I и J (I ¹ J).
Первая сумма в критерии — ожидаемое значение прибыли, обеспечиваемой пакетом акций, вторая — дисперсия прибыли пакета акций, взятая с «весом» 3. Дисперсия прибыли пакета акций служит мерой риска.
Пусть средние значения процентов годовой прибыли от акций компаний составляют соответственно 8, 10 и 13%. Дисперсии s11 = 0,1, s22 = 0,15, s33 = 0.19. Ковариации s12 = 0,01, s13 = 0,02, s23 = 0,03.
Вопросы:
1. Является ли целевая функция строго вогнутой?
2. Какую сумму следует вложить в покупку акций типа 1?
3. Какую сумму следует вложить в покупку акций типа 3?
Решение. Модель нелинейного (в данном случае — квадратичного) программирования имеет вид
Рассчитав значения соответствующих определителей (главных миноров матрицы Хессе), можно убедиться, что выполняются условия (4), откуда следует, что целевая функция строго выпукла для любых значений х1, Х2, Х3 (значения определителей не зависят от значений переменных).
Используя программу GINO, исходную информацию для решения этой задачи представляем в следующем виде:
Получаем следующий результат:
Непосредственной подстановкой полученного решения в условия (5)—(8) можно убедиться, что условия Куна — Таккера выполняются, причем решение обеспечивает глобальный максимум целевой функции, поскольку F строго вогнута.
Ответы: 1. Да, является (при любых значениях переменных).
2. 496,8 тыс. руб. 3. 197,93 тыс. руб.
Пример 3. Производство молочных продуктов.
Молокозавод производит для местного рынка три вида продуктов: сметану, творог и сыр. Молоко поступает ежедневно из двух ферм. Технологические и экономические данные о производимых продуктах приведены в следующей таблице:
Затраты, связанные с приобретением сырья (молока), являются кусочно-линейной функцией закупаемого количества:
А) для фермы 1
Б) для фермы 2
Вопросы:
1. Какова максимальная ежедневная прибыль молокозавода?
2. Сколько молока следует закупать на ферме 1?
3. Сколько молока следует закупать на ферме 2?
4. Как изменится максимальная прибыль, если максимальное суточное производство сметаны увеличить на 1 кг?
5. Как изменится максимальная прибыль, если максимальное суточное производство творога уменьшить на 2 кг?
Решение. Задача может быть описана с помощью модели линейного программирования.
Пусть X1 — количество молока, закупаемого на ферме 1, Х2 — Количество молока, закупаемого па ферме 2. Представим Х1 и Х2 в следующем виде:
Тогда стоимость молока, закупаемого на ферме 1, описывается функцией
А стоимость молока, закупаемого на ферме 2, — функцией
Окончательно модель линейного программирования имеет вид
Структура матрицы задачи линейного программирования показана в следующей таблице:
Используя для решения этой задачи программу POMWIN, получаем следующий результат:
Далее представлена таблица, содержащая границы устойчивости по коэффициентам целевой функции:
Границы устойчивости по правым частям ограничений:
Ответы: 1. 8275 руб. 2. 312,5 кг. 3. 218,75 кг. 4. Увеличится на 45 руб. 5. Уменьшится на 80 руб.
< Предыдущая | Следующая > |
---|