28. Признаки Дирихле и Абеля для рядов с произвольными комплексными членами
Докажем некоторые достаточные признаки сходимости рядов.
Предварительно рассмотрим одно преобразование сумм

Такое преобразование частичных сумм называется Преобразованием Абеля. С его помощью докажем Неравенство Абеля.
Лемма (Неравенство Абеля). Если
и
, то
.
Доказательство.
Т. к.
Þ ![]()

Важно, что оценка дается модулем первого и последнего члена и не зависит от числа слагаемых.
Замечание. Доказательство проходит и в случае
. Т. е. можно потребовать просто монотонности
.
Признак Дирихле. Пусть дан ряд
: последовательность {An} – монотонно стремится к 0, а последовательность частичных сумм{Bn} ряда
- ограничена, тогда ряд
- сходится.
Доказательство.
"
"![]()

"e>0 $ N(e): "n> N(e) ![]()
Теперь применяем неравенство Абеля
.
Согласно критерию Коши ряд
сходится.
__________________
Докажем, что частичные суммы
и
ограничены при
(при
первая сумма равна 0, а вторая не ограничена).
Действительно
![]()
![]()
Сумма первых N Членов геометрической последовательности с первым членом
и знаменателем
есть
![]()
![]()
![]()
![]()
![]()
Действительная и мнимая части этого выражения не превосходят
.
Примеры.
1.
. Последовательность {1/N} – монотонно стремится к нулю. А последовательность
- ограничена Þ по признаку Дирихле исходный ряд сходится.
2.
3.![]()
Признак Абеля. Если последовательность {An} монотонна и ограничена, а ряд
сходится, то ряд из произведений
также сходится.
Доказательство.
$М: ![]()
Выберем произвольное e. Из сходимости
Þ $ N(e): "n> N(e)"P>0
. Тогда согласно неравенству Абеля

Согласно критерию Коши ряд
сходится.
____________________________________________
Пример.
![]()
Ряд
сходится по признаку Дирихле. А последовательность
ограничена и монотонна Þ по признаку Абеля исходный ряд сходится.
| < Предыдущая | Следующая > |
|---|