5.1.1. Справочный материал
Основные элементарные функции
6. Степенная функция У = хα,
7. Показательная функция У = ах, A > 0, A1.
8. Логарифмическая функция Y=logAx, A > 0, A1.
9. Тригонометрические функции: Y = sin X, Y = cos X, Y = tg X, Y = ctg X, Y = sec X, Y = cosec X.
10. Обратные тригонометрические функции: Y = arcsin X, Y = arсcos X, Y = arctg X, Y = arcctg X, Y = arcsec X, Y = arccosec X.
Определение предела
Число А называется Пределом функции у = F(X) при х, стремящемся к х0, если
Такое, что
Обозначение:
1-й замечательный предел
Cледствия из первого замечательного предела
2-й замечательный предел
Следствия из второго замечательного предела
Гиперболические функции
Определение производной
Уравнение касательной
Правила дифференцирования
Таблица основных производных
№ |
F(x) |
F΄(x) |
№ |
F(x) |
F΄(x) |
1 |
C |
0 |
9 |
Ctgx | |
2 |
Xα |
αxα-1 |
10 |
Shx |
Chx |
3 |
Ax |
Axlna |
11 |
Chx |
Shx |
4 |
Ex |
Ex |
12 |
Thx | |
5 |
Lnx |
13 |
Cthx | ||
6 |
Sinx |
Cosx |
14 |
Arcsinx | |
7 |
Cosx |
-sinx |
15 |
Arccosx | |
8 |
Tgx |
16 |
Arctgx | ||
17 |
Arcctgx |
Логарифмическое дифференцирование
Правило Лопиталя
Формула Тейлора
Частные производные
< Предыдущая | Следующая > |
---|