09. Геометрически приложения. Задача о нахождении наибольших и наименьших значений
1°. Пусть пространственная кривая задана параметрически: ; где — дифференцируемые функции.
В тех точках , где , кривая имеет касательную. Уравнение касательной:
.
2°. Нормальной плоскостью к кривой в т. называется плоскость, проходящая через эту точку перпендикулярно касательной.
Её уравнение:
3°. Пусть поверхность задана уравнением , — точка поверхности, тогда уравнение касательной плоскости имеет вид:
4°. Прямая, проходящая через т. перпендикулярно касательной плоскости, называется нормалью к поверхности.
Уравнение нормали:
.
Примеры.
А) На линии найти точку, касательная в которой параллельна плоскости Написать уравнение касательной.
Решение: по условию касательная параллельна плоскости, а значит, вектор касательной перпендикулярен нормальному вектору плоскости .
; .
Искомая точка имеет координаты ; ; а уравнение касательной
.
Б) Для поверхности найти уравнение касательной плоскости, параллельной плоскости .
Уравнение искомой касательной плоскости
,
Поскольку касательная плоскость параллельна плоскости , то координаты их нормальных векторов пропорциональны
;
Подставляя эти соотношения в уравнение поверхности, получим
; ,
Таким образом, есть 2 точки, удовлетворяющие условию: а уравнения касательных плоскостей
1.
1.
В) Доказать, что касательная плоскость к поверхности в любой точке образует с координатными плоскостями тетраэдр постоянного объема.
Решение:
Пусть — произвольная точка поверхности
; ; ;
Уравнение касательной
,
.
Отрезки, отсекаемые касательной плоскостью на осях координат, соответственно равны Объем тетраэдра равен
5°. Наибольшее и наименьшее значение функции в области
Функция дифференцируемая в ограниченной замкнутой области, достигает своего наибольшего (наименьшего) значения либо в стационарной точке, либо на границе области.
Для решения задачи о наибольшем (наименьшем) значении нужно:
1) Найти стационарные точки функции , попадающие внутрь области.
Для этого нужно решить систему уравнений .
2) Выбрать те стационарные точки, которые попали внутрь области. Вычислить значение функции в этих точках.
3) Найти наибольшее и наименьшее значение функции на границе области. Эта задачи сводится к отысканию наибольшего и наименьшего значения функций одной переменной.
4) Сравнивая все полученные значения, найти наибольшее и наименьшее из них.
Пример.
Найти наибольшее и наименьшее значения функции в области, ограниченной осями координат и прямой
Решение:
Указанная область — треугольник АОВ. В соответствии с приведенной схемой решения
Находим стационарные точки функции:
, .
2) Точка является внутренней точкой области; .
3) Исследуем функцию на границе области:
: . Задача сводится к отысканию наибольшего и наименьшего значений функции одной переменой , .
Находим . Точка — стационарная точка этой функции;
В граничных точках и значения функции равны , .
Аналогично на прямой : , , Точка — стационарная, принадлежит области В граничной точке ,
На отрезке прямой
— стационарная точка,
На концах отрезка значения функции уже вычислены.
4) Выбирая наименьшее и наибольшее из всех полученных значений, находим:
,
< Предыдущая | Следующая > |
---|