5.2. Метод градиента (метод скорейшего спуска)

Пусть имеется система нелинейных уравнений:

(5.13)

Систему (5.13) удобнее записать в матричном виде:

(5.14)

Где - вектор – функция; - вектор – аргумент.

Решение системы (5.14), как и для системы линейных уравнений (см. п. 3.8), будем искать в виде

(5.15)

Здесь и - векторы неизвестных на P и P+1 шагах итераций; вектор невязок на P-ом шаге – F(P) = F(X(P)); W'P – транспонированная матрица Якоби на P – ом шаге;

;

.

Пример 5.2. Методом градиента вычислим приближенно корни системы

Расположенные в окрестности начала координат.

Имеем:

Выберем начальное приближение:

По вышеприведенным формулам найдем первое приближение:

Аналогичным образом находим следующее приближение:

Ограничимся двумя итерациями (шагами), и оценим невязку:

Замечания

· Как видно из примера, решение достаточно быстро сходится, невязка быстро убывает.

· При решении системы нелинейных уравнений методом градиента матрицу Якоби необходимо пересчитывать на каждом шаге (итерации).

Вопросы для самопроверки

· Как найти начальное приближение: а) для метода Ньютона; б) для метода градиента?

· В методе скорейшего спуска вычисляется Якобиан (матрица Якоби). Чем отличается Якобиан, вычисленный для СЛАУ, от Якобиана, вычисленного для нелинейной системы уравнений?

· Каков критерий остановки итерационного процесса при решении системы нелинейных уравнений: а) методом Ньютона; б) методом скорейшего спуска?

© 2011-2024 Контрольные работы по математике и другим предметам!