3.8. Метод скорейшего спуска (градиента) для случая . системы линейных алгебраических уравнений

В рассматриваемом ниже итерационном методе вычислительный алгоритм строится таким образом, чтобы обеспечить минимальную погрешность на шаге (максимально приблизиться к корню).

Представим систему линейных уравнений в следующем виде:

(3.38)

Запишем выражение (3.38) в операторной форме:

(3.39)

Здесь приняты следующие обозначения:

; ; . (3.40)

В методе скорейшего спуска решение ищут в виде

, (3.41)

Где и - векторы неизвестных на P и P+1 шагах итераций; вектор невязок на P-ом шаге определяется выражением

, (3.42)

А (3.43)

В формуле (3.43) используется скалярное произведение двух векторов, которое определяется следующей формулой:

(3.44)

В формуле (3.43) - транспонированная матрица Якоби, вычисленная на P-ом шаге. Матрица Якоби вектор – функции F(X) определяется как

(3.45)

Нетрудно убедиться, что для системы (3.39) матрица Якоби равна

(3.46)

Как и для метода простой итерации, достаточным условием сходимости метода градиента является преобладание диагональных элементов. В качестве нулевого приближения можно взять .

Замечания

· Как видно из выражения (3.45), матрица Якоби не зависит от шага итерации.

· Требования минимизации погрешности на каждом шаге обусловили то, что метод градиента более сложен (трудоемок), чем методы Якоби и Зейделя.

· В методе градиента итерационный процесс естественно закончить при достижении , вектор невязок входит в вычислительную формулу.

Обсуждение

· В приближенных методах можно обеспечить практически любую погрешность, если итерационный процесс сходится.

· Итерационный процесс можно прервать на любом K–ом шаге и продолжить позднее, введя в качестве нулевого шага значения X(K).

· В качестве недостатка приближенных методов можно отметить то, что они часто расходятся, достаточные условия сходимости (преобладание диагональных элементов) можно обеспечить только для небольших систем из 3 – 6 уравнений.

Пример 3.7. Методом скорейшего спуска решим систему уравнений

Так как диагональные элементы матрицы являются преобладающими, то в качестве начального приближения выберем:

Следовательно, вектор невязок на нулевом шаге равен

Далее последовательно вычисляем

Отсюда

Причем

Аналогично находятся последующие приближения и оцениваются невязки. Что касается данного примера, можно отметить, что итерационный процесс сходится достаточно медленно (невязки уменьшаются).

Вопросы для самопроверки

· Назовите известные вам методы решения СЛАУ.

· Чем точные методы отличаются от приближенных?

· Что такое прямой и обратный ход в методе Гаусса?

· Нужен ли обратный ход при вычислении методом Гаусса а) обратной матрицы; б) определителя?

· Что такое невязка?

· Сравните достоинства и недостатки точных и приближенных методов.

· Что такое матрица Якоби?

· Надо ли пересчитывать матрицу Якоби на каждом шаге итерации в методе градиента?

· Исходная СЛАУ решается независимо тремя методами – методом Якоби, методом Зейделя и методом градиента. Будут ли равны значения

А) начального приближения (нулевой итерации);

Б) первой итерации?

· При решении СЛАУ (n > 100) итерационными методами решение расходится. Как найти начальное приближение?

© 2011-2024 Контрольные работы по математике и другим предметам!