Вариант № 04

Вариант 4

Двойные и тройные интегралы

Задача 1. Изменить порядок интегрирования

Выразим переменную Y из уравнений

и при условии ,.

Получим и

Область интегрирования ограничена

Ветвями парабол и осью OY.

Область интегрирования D задается системой неравенств

Следовательно, двойной интеграл вычисляется по формуле:

Задача 2. Вычислить:

Задача 3. Вычислить:

Задача 4. Найти площадь фигуры, ограниченной данными линиями:

Поскольку фигура ограничена дугами окружностей,

Перейдем к полярным координатам:

Уравнения линий принимают вид:

Или

Значит, искомая фигура задается неравенствами:

Площадь фигуры:

Задача 5. Найти объём тела, заданного ограничивающими его поверхностями:

.

Решение.

1) Находим уравнение линии

Пересечения поверхности

и плоскости :

Следовательно, уравнение линии :

- окружность;

2)Перейдём к полярным координатам:

Тогда круг :

Значит:

Задача 6. Пластинка D задана неравенствами,Поверхностная плотность. Найти массу пластинки.

,

Решение.

Произведем замену переменных

; . Имеем ; ;

; ;

,

Где задается неравенством:

Перейдем к полярным координатам

Имеем

© 2011-2024 Контрольные работы по математике и другим предметам!