Вариант № 09
Задача 1.Найти общее решение дифференциального уравнения.
, (1) – дифференциальное уравнение с разделяющимися переменными
![]()
Интегрируя обе части уравнения, получим:
![]()
Значит, Общее решение дифференциального уравнения (1): ![]()
Задача 2.Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.
![]()
Найдем общее решение дифференциального уравнения с разделяющимися переменными
![]()
Интегрируя обе части уравнения, получим:
![]()
Значит, Общее решение дифференциального уравнения (1): ![]()
Подставляем в полученное решение начальное условие: ![]()
Значит, искомое частное решение: ![]()
Задача 3. Решить дифференциальное уравнение
(1)
Поделим и числитель, и знаменатель на ![]()

Применим подстановку ![]()
![]()
Тогда: ![]()
Интегрируя, получим общий интеграл уравнения
В результате общий интеграл уравнения имеет вид: ![]()
Подставляя значение
, получим общий интеграл уравнения (1): ![]()
Задача 4. Решить дифференциальное уравнение
(1)
Составим определитель ![]()
Положим
, где
Определяются из системы уравнений:
![]()
Положим в уравнении (1)
; Получим: 
Применим подстановку ![]()
![]()
Тогда: 
Интегрируя обе части уравнения, получим:
Учитывая, что
, получим общий интеграл уравнения (1): ![]()
Задача 5.Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.

Ищем общее решение линейного неоднородного дифференциального уравнения 1-го порядка
(1)
Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка
; Общее решение этого уравнения: ![]()
Применим метод вариации постоянных:
; Дифференцируем Y По X: ![]()
Подставляем полученные значения в уравнение (1):

Общее решение линейного неоднородного дифференциального уравнения 1-го порядка ![]()
Подставляем в полученное решение начальное условие: ![]()
Значит, искомое частное решение: ![]()
Задача 6. Найти частные решения Дифференциального уравнения, удовлетворяющие начальным условиям.
![]()
Ищем общее решение уравнения Бернулли:
(1) ![]()
Применим подстановку ![]()
Подставляем в уравнение (1): 
Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка
![]()
Общее решение этого уравнения: ![]()
Применим метод вариации постоянных:
; Дифференцируем Z По X: ![]()
Подставляем полученные значения в неоднородное уравнение по Z:

Значит: ![]()
Следовательно, общее решение уравнения Бернулли (1): ![]()
Подставляем в полученное решение начальное условие: ![]()
Значит, искомое частное решение: ![]()
Задача 7. Найти общий интеграл Дифференциального уравнения.
(1)
Так как
, значит, мы имеем уравнение в полных дифференциалах
Находим 

Общий интеграл Дифференциального уравнения ![]()
Задача 8. Определить тип дифференциального уравнения, найти общее решение и построить интегральную кривую, проходящую через точку
.
- Линейное неоднородное дифференциальное уравнение 1-го порядка
Ищем общее решение линейного неоднородного дифференциального уравнения 1-го порядка
(1)
Найдем общее решение линейного однородного дифференциального уравнения 1-го порядка
![]()
Общее решение однородного уравнения:
; применим метод вариации постоянных:
;

Следовательно, общим решением является семейство кривых: ![]()
Из условий в точке М найдем: ![]()
Отсюда искомая интегральная кривая: ![]()
Задача 9. Решить дифференциальное уравнение
(1) -явно не содержит
Полагая
, имеем
, тогда уравнение (1) принимает вид:
– уравнение с разделяющимися переменными относительно
.
Общее решение этого уравнения: 
Рассмотрим 
![]()
Следовательно, общий интеграл уравнения (1):
.
Задача 10. Найти решение Дифференциального уравнения, удовлетворяющее заданным условиям.

Ищем общее решение дифференциального уравнения 2-го порядка:
Явно не содержит х. Положим
,
Тогда уравнение преобразуется к виду: ![]()
Из условий
и
имеем: ![]()
Значит: ![]()
Из условия
имеем: ![]()
Значит, искомое частное решение, удовлетворяющее указанным условиям: ![]()
Задача 11. Найти общее решение дифференциального уравнения
(1)
- линейное однородное уравнение 2 порядка с постоянными коэффициентами
Характеристическое уравнение:
Следовательно, фундаментальную систему решений уравнения (1) образуют функции
![]()
общее решение уравнения (1) имеет вид:
.
Задача 12. Найти частное решение Дифференциального уравнения, удовлетворяющее указанным условиям.

Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами ![]()
Характеристическое уравнение:
Следовательно, фундаментальную систему решений уравнения (1) образуют функции ![]()
общее решение уравнения (1) имеет вид:
.
Продифференцируем 
Из указанных условий имеем: 
Частное решение Дифференциального уравнения, удовлетворяющее указанным условиям:
![]()
Задача 13. Найти общее решение дифференциального уравнения
(1)
- линейное неоднородное уравнение 2 порядка с постоянными коэффициентами и специальной правой частью (многочлен)
Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами ![]()
Характеристическое уравнение:
общее решение однородного уравнения имеет вид:
.
Структура общего решения неоднородного уравнения (1) имеет вид:
;
где
- общее решение однородного уравнения, а функция
- частное решение неоднородного уравнения.
Так как степень правой части не совпадает с корнем характеристического уравнения, то частное решение ищем в виде: ![]()
Подставляем частное решение в уравнение (1) и находим неопределенные коэффициенты: 

Следовательно, Общее решение неоднородного уравнения (1):

Задача 14. Найти общее решение дифференциального уравнения
(1)
- линейное неоднородное уравнение 2 порядка с постоянными коэффициентами и специальной правой частью
Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами ![]()
Характеристическое уравнение:
общее решение однородного уравнения имеет вид:
.
Применим принцип наложения решений (суперпозиции).
Структура общего решения неоднородного уравнения (1) имеет вид:
;
где
- общее решение однородного уравнения, а функции
- частные решения следующих уравнений:
;
![]()
Причём частные решения
ищем в виде: ![]()
![]()
Подставляем поочередно частные решения
в соответствующие уравнения и находим неопределенные коэффициенты: Подставляем частное решение в уравнение (1) и находим неопределенные коэффициенты: ![]()

![]()
Следовательно, Общее решение неоднородного уравнения (1):
![]()
Задача 15. Найти частное решение Дифференциального уравнения, удовлетворяющее указанным условиям.
Найдем решение линейного неоднородного уравнения 2 порядка с постоянными коэффициентами ![]()
Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами
(1)
Характеристическое уравнение:
Следовательно, фундаментальную систему решений уравнения (1) образуют функции ![]()
общее решение однородного уравнения (1) имеет вид:
.
РЕшение линейного неоднородного уравнения ищем методом вариации произвольных постоянных:
, а неизвестные функции
определяем из системы уравнений:
![]()

Следовательно, Общее решение неоднородного уравнения (1):
![]()
Продифференцируем полученное решение ![]()
Из условия
имеем: 
Из условия
имеем:

Частное решение Дифференциального уравнения, удовлетворяющее указанным условиям:
![]()
Задача 16. Найти общее решение дифференциального уравнения
(1)
- линейное неоднородное уравнение 4-го порядка с постоянными коэффициентами и специальной правой частью (многочлен)
Ищем решение линейного однородного уравнения 4 порядка с постоянными коэффициентами: ![]()
Характеристическое уравнение:
Следовательно, фундаментальную систему решений уравнения (1) образуют функции ![]()
общее решение однородного уравнения имеет вид:
.
Частное решение
Ищем в виде:
;
![]()
Подставляем в неоднородное уравнение (1):
![]()

Следовательно, Общее решение неоднородного уравнения (1):
![]()
Задача 17. Найти общее решение уравнения Эйлера:
(1)
Введем новую независимую переменную
.
Положим
, тогда 
Подставим в уравнение (1) и получим 
- линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами и специальной правой частью
- линейное однородное уравнение 2 порядка с постоянными коэффициентами.
Характеристическое уравнение:
общее решение однородного уравнения имеет вид:
.
Частное решение неоднородного уравнения ищем в виде: ![]()
Подставляем частное решение в неоднородное уравнение и находим неопределенные коэффициенты:
Следовательно, Общее решение неоднородного уравнения: ![]()
Значит, Общее решение уравнения Эйлера (1):
![]()
Задача 18. Решить систему дифференциальных уравнений
Дифференцируя первое уравнение по
, получим: 
Из первого уравнения выразим значение ![]()
Значит: ![]()
(1)
Получили линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами и специальной правой частью.
Ищем решение линейного однородного уравнения 2 порядка с постоянными коэффициентами:
Характеристическое уравнение:
Следовательно, общее решение однородного уравнения имеет вид:
.
Структура общего решения неоднородного уравнения (1) имеет вид:
;
где функции
- частные решения следующих уравнений:
;
;
Причём частные решения
ищем в виде:
, ![]()
Подставляем поочередно частные решения
в соответствующие уравнения и находим неопределенные коэффициенты: 
Следовательно, Общее решение неоднородного уравнения (1):
![]()
Значение
Находим из выражения: ![]()

| < Предыдущая | Следующая > |
|---|