Вариант № 28
Задача 1
Задача 2
Задача 3
В правой части ур - я (1а) – одн. ф-я ; введем новую неизвестную функцию ;
Тогда
Задача 4
Введем новую неизвестную ф-ю
Задача 5
Задача 6
Задача 7
Задача 8
Задача 9
Задача 10
Уравнение (1) не содержит явно аргумент X ; введем новый аргумент Y и новую неизвестную ф-ю
Задача 11
Задача 12
Задача 13
- лин. однор. диф. ур. 2 пор. с пост. коэф.;
Хар. ур. для ур – я (1):
След., фунд. с – му реш – й ур – я (1) образуют ф – и
общ. реш. ур. (1) имеет вид:
Задача 14
- лин. однор. диф. ур. 4 пор. с пост. коэф.;
Хар. ур. для ур – я (1):
След., фунд. с – му реш – й ур – я (1) образуют ф – и ;
Опр – ль Вронского для фунд. с – мы реш – й:
, след., с – ма ф – й линейно независима;
Общ. реш. ур. (1) имеет вид: .
Задача 15
- лин. неоднор. диф. ур. 3 пор. с пост. коэф. и со спец.
Правой частью (квазимногочлен); соотв. однор. диф. ур.:
Хар. ур. для ур. (2):
Общ. реш. однор. ур. (2) имеет вид: ;
Структура общего реш – я неоднор. ур - я (1) имеет вид: ;
Где - общ. реш. однор. ур. (2), а функции суть, соответственно, частные
Реш – я след. ур – й:
Причём частные реш – я Ищем в виде:
.
Задача 16
- зад. Коши.
Ур – е (1) - лин. неоднор. диф. ур. 3 пор. с пост. коэф. и со спец. правой частью (квазимногочлен);
Соотв. однор. диф. ур.:
хар. ур. для ур – я (5):
Общ. реш. однор. ур. (5) имеет вид: ;
Частное реш – е неоднор. ур. (1) Ищем в виде: ;
Рассм.
Общее реш – е неоднор. ур - я (1) имеет вид: ;
Рассм. ; ;
Опр – м пост. из нач. усл – й (2), (3), (4):
;
;
;
Рассм.
Реш. зад. Коши (1) - (4): .
Задача 17
- лин. неоднор. диф. ур. 2 пор. с пост. коэф. и со спец. правой частью (квазимногочлен);
Соотв. однор. диф. ур.:
Хар. ур. для ур – я (2): ;
Общ. реш. однор. ур. (2) имеет вид: ;
Структура общего реш – я неоднор. ур - я (1): ; где - общ. реш. однор. ур. (2),
А - частное реш – е неодн. ур – я (1), которое ищем в виде: ;
Рассм.
;
Общее реш – е неоднор. ур - я (1) имеет вид:
Задача 18
- лин. неоднор. диф. ур. 2 пор. с пост. коэф. и со спец. правой частью (многочлен);
Соотв. однор. диф. ур.: хар. ур.: ;
Общ. реш. однор. ур. (2) имеет вид: ;
Структура общего реш – я неоднор. ур - я (1): ; где - общ. реш. однор. ур. (2),
А - частное реш – е неодн. ур – я (1), которое ищем в виде:
Рассм. ; ;
Общее реш – е неоднор. ур - я (1) имеет вид:
Задача 19
- лин. неоднор. диф. ур. 2 пор. с пост. коэф.;
Соотв. однор. диф. ур.: хар. ур. для ур – я (2):
След., фунд. с – му реш – й ур – я (2) образуют ф – и ;
А общ. реш. однор. ур. (2) имеет вид: ;
Общ. реш. неоднор. ур. (1) будем искать методом вариации произвольных постоянных, то есть в виде, а неизвестные ф – и опр – м из с – мы ур – й:
Рассм.
Общее реш. ур - я (1) имеет вид:
< Предыдущая | Следующая > |
---|