54. Многомерное нормальное распределение
N-мерная непрерывная случайная величина имеет нормальное распределение, если ее многомерная плотность вероятности в матричном виде
Показать, что формула
В двумерном случае переходит в
Для n=2 находим
Показатель степени при e
Найдем обратную матрицу матрице В
Проводим непосредственное доказательство
B - ковариационная матрица
Показать, что эта формула в двумерном случае совпадает с выражением, рассмотренном ранее.
Свойства n-мерного нормального распределения.
- определитель матрицы B - неотрицательное число.
По критерию Сильвестрова, если то все главные миноры матрицы B неотрицательные и определитель матрицы B неотрицателен.
< Предыдущая | Следующая > |
---|