34. Неравенство Чебышева
Рассмотрим случайную величину X с конечным мат. ожиданием и дисперсией
Для любого неотрицательного числа t вероятность наступления события
Пусть Z - непрерывная случайная величина с плотностью вероятности f(Z). Пространство событий величины Z (0; ¥). Тогда имеет место неравенство
Доказать неравенства
Рассмотрим два сложных события
A - произвольное действительное число.
Показать самим, что x - удовлетворяет и одному и другому неравенству.
Тогда справедливо
В данном случае
Равномерность неравенств при e>0
Или, в частности, при a=n=MX
При e=st справедливо неравенство Чебышева.
< Предыдущая | Следующая > |
---|