16. Композиция испытаний

Имеется вероятностное пространство, которое порождает испытание 1.

Где Ei, i=1, ..., m1 - пространство элементарных событий в результате испытания.

P(Ei), i=1, ..., m1 - вероятности элементарных событий.

Испытание 2 порождает вероятностное пространство вида

P(Ei), P(Qj) - разные вероятностные меры.

Композицией двух испытаний называется сложное испытание, состоящее в поведении первого и второго испытания.

Композиция испытаний порождает вероятностное пространство вида:

EiQj - композиционное событие.

В общем случае по P(Ei) и P(Qj) найти P(EiQj) невозможно.

Рассмотрим один частный случай, когда это можно сделать.

Два испытания называются Независимыми, если различные исходы обоих испытаний определяются несвязанными между собой случайными факторами.

Из определения независимости испытания вытекает, что условные частости наступления события в одном испытании, при условии, что во втором испытании произошло фиксированное число событий равны безусловным частостям, если они существуют.

Пусть испытания независимы. В результате проведения первого испытания произошло элементарное событие Ei, в результате второго испытания может произойти все что угодно.

Тогда сложное событие, определяющее исход первого и второго испытания имеет вид:

и равно сумме комбинаций исходов первого и второго испытаний.

Вероятность сложного события A.

, т. е. результаты второго испытания не зависят от результатов первого.

Если в результате второго испытания произошло событие Qj, а в результате первого испытания могло произойти все что угодно, то сложное событие B имеет вид: .

Вероятность сложного события B равна сумме вероятностей комбинаций вида EiQj, i=1, ..., m1

, т. к. исходы первого испытания не влияют на исходы второго испытания. Из факта: P(AB)=P(A)P(B/A); P(B/A)=P(B); AB=EiQj (надо доказать)

A={EiQ1, EiQ2, ..., EiQj, ..., EiQm2}

B={E1Qj, E2Qj, ..., EiQj, ..., Em1Qj}

По определению произведения AB в него входят только те события, которые входят и в A, и в B. Из приведенных выше формул следует, что только событие EiQj входит и в A, и в B, то AB= EiQj. Следует:

Композиционное пространство имеет вид:

Общая структура независимых событий в композиционном пространстве, порожденном композицией испытаний:

Т. е. в результате первого испытания произошли элементарные события: .

В результате второго испытания события: .

Сложное событие B определяет все возможные комбинации исходов двух испытаний независимо друг от друга. В результате первого испытания произошли элементарные события: .

В результате второго испытания события: .

Тогда:

, т. к. второе испытание не влияет на результаты первого.

Т. к. , (надо доказать)

То

При решении практических задач, связанных с независимыми испытаниями обычно не требуется строить композиционных пространств элементарных событий, а использовать формально неверную запись: P(A×B)=P(A)×P(B).

© 2011-2024 Контрольные работы по математике и другим предметам!