3.1. Т-тесты
Т-тесты предназначены для установления различий между двумя группами респондентов. При этом сравниваются только два средних значения. SPSS предлагает три основных типа t-тестов:
■ для двух независимых выборок;
■ для двух зависимых выборок;
■ для одной выборки.
В последующих разделах мы подробно расскажем о каждом из них, но сначала приведем основные характеристики переменных, участвующих в t-тестах (табл. 3.1).
Т-тесты для независимых выборок | |||
Зависимые переменные |
Независимые переменные | ||
Количество |
Тип |
Количество |
Тип |
Одна |
Дихотомическая интервальная |
Любое |
Интервальная |
Т-тесты для зависимых выборок | |||
Зависимые переменные |
Независимые переменные | ||
Количество |
Тип |
Количество |
Тип |
- |
- |
Две |
Интервальная |
Т-тесты для одной выборки | |||
Зависимые переменные |
Независимые переменные | ||
Количество |
Тип |
Количество |
Тип |
- |
- |
Любое |
Интервальная |
Обратите внимание: зависимая переменная есть только для t-тестов независимых выборок. Для других видов t-тестов (зависимых выборок и одной выборки) зависимая переменная отсутствует. Это связано с тем, что в последнем случае анализу подвергается фактически одна и та же выборка респондентов. В качестве тестируемых независимых переменных во всех случаях используются только переменные с интервальной шкалой. Порядковые переменные могут использоваться только после преобразования их к интервальному виду (см. раздел 2.1).
3.1.1. Т-тесты для независимых выборок
В случае t-тестов для независимых выборок под независимыми выборками понимаются бинарные категории (то есть варианты ответа) какой-либо переменной. Например, мужчины и женщины (вопрос Пол респондента), покупатели и не покупатели какого-либо продукта (вопрос Покупаете ли Вы данный продукт?) и т. д. То есть когда есть два уровня группирующей (зависимой) переменной и несколько независимых переменных, на основании которых и будет выполняться различие между группами зависимой переменной.
Рассмотрим методику проведения t-тестов для независимых выборок на следующем примере. Предположим, что мы оцениваем различия в частоте посещения игровых клубов между посетителями заведений марки X и других марок. Откройте диалоговое окно Independent-Samples T Test при помощи меню Analyze ► Compare Means ► Independent-Samples T Test (рис. 3.1). В область Test Variable(s) поместите переменные, являющиеся критерием для установления различий (в нашем случае это ql8_i Частота посещения). Затем в поле Grouping Variable переместите переменную, которая будет являться группирующей (зависимой). В нашем случае это переменная ql_8, кодирующая категории респондентов, посещающих/не посещающих игровые залы марки X.
|
Так как данная переменная является вариантом ответа на многовариантный вопрос Какие игровые клубы Вы посещаете?, она может принимать два значения:
■ 1 — посещают клубы X;
■ 0 — не посещают клубы X.
Эти два значения необходимо указать в специальном диалоговом окне Define Groups, вызываемом одноименной кнопкой (рис. 3.2). Обратите внимание, что если вместо дихотомии мы имеем группирующую переменную с интервальной шкалой, это диалоговое окно позволяет установить точку отсечения Cut point, которая буде! разделять все возможные значения данной переменной на две группы.
|
С помощью кнопки Options в главном диалоговом окне рассматриваемой процедуры можно установить доверительный уровень для результатов расчета t-теста (рис. 3.3). По умолчанию установлен уровень доверия 95 %. Как было показано выше в разделе 1.2, этот уровень точности (достоверности) результатов является достаточным при проведении статистического анализа в маркетинговых исследованиях.
|
После завершения процедуры расчета t-теста в окне SPSS Viewer будут отражены результаты (рис. 3.4). В первой таблице Group Statistics вы видите средние значения тестируемой переменной (частота посещения клубов) для обеих групп зависимой переменной X. Как следует из рисунка, для респондентов, посещающих игровые залы марки X, средняя частота посещения составляет 11,9 раз в месяц. Для респондентов, не посещающих данные залы, это значение равно 11,5. Вторая таблица Independent Samples Test позволяет установить статистическое различие между данными значениями.
|
X |
N |
Mean |
Std. Deviation |
Std. Emor Mean | |
Частота посещения |
1 |
49 |
11,9288 |
10,43081 |
1,49140 |
0 |
526 |
11,5048 |
9,98682 |
,43546 |
|
Levene’s Test for Equality of Variances |
T-test for Equality of Means | |||||||||
F |
Sug. |
T |
Df |
Sig. (2-talid) |
Mean Difference |
Std. Emor Difference | ||||
Lower |
Upper | |||||||||
Частота посеще-ния |
Equal variances assumed |
,382 |
,547 |
,283 |
573 |
,777 |
,4238 |
1,49745 |
-2,61734 |
3,36497 |
Equal variances not assumed |
,273 |
56,495 |
,786 |
,4230 |
1,55367 |
-2,68795 |
3,51559 |
|
Анализ этой таблицы начинается с определения значимости теста Ливина (Levene). Данный тест служит для тестирования гипотезы о равенстве дисперсий в тестируемых переменных. Если значение в столбце Sig. столбца Levene's Test for Equality of Variances показывает статистическую Незначимость теста (в нашем случае — 0,547), то различие между двумя анализируемыми средними определяется из строки Equal variances assumed. В противном случае, если тест Levene статистически Значим, различие между двумя средними определяется из строки Equal variances not assumed.
Поскольку в нашем примере тест Ливина является статистически незначимым, то определить значимость различия между двумя тестируемыми группами можно при помощи значения, находящегося на пересечении первой строки и столбца Sig. (2-tailed). Значение 0,777 говорит о том, что различие в частоте посещения игровых залов респондентами, посещающими и не посещающими клубы марки X, является статистически незначимым.
3.1.2. Т-тесты для спаренных выборок
Т-тесты для спаренных выборок применяются в случае, когда на различные вопросы отвечает одна и та же группа респондентов.
Например, пассажиры оценивают уровень и качество питания авиакомпании X и авиакомпании Y. Чтобы определить, является ли статистически значимой разница в оценке этих двух авиакомпаний, следует воспользоваться диалоговым окном Paired-Samples T Test, вызываемым при помощи меню Analyze ► Compare Means ► Paired-Samples T Test (рис. 3.5). В левом списке содержатся все доступные переменные из базы данных. Выберите из списка две переменные для тестирования. В нашем случае это qll (Питание в авиакомпании X) и q26 (Питание в авиакомпании Y). По мере того как вы будете выбирать переменные, они будут последовательно отображаться в области Current Selections. Указав две переменные для анализа, щелкните на кнопке с символом ► , чтобы перенести переменные в область Paired Variables. Кнопка Options позволяет установить уровень доверия для производимых расчетов.
|
После щелчка на кнопке ОК будут произведены расчеты t-теста для анализируемых переменных; результаты теста будут отражены в окне SPSS Viewer (рис. 3.6). Как видно на рисунке, SPSS выводит на экран три таблицы. Рассмотрим их по порядку.
Итак, в первой таблице, Paired Samples Statistics, вы видите рассчитанные средние значения для обеих тестируемых переменных. Так, в нашем случае респонденты оценили питание в авиакомпании Y в среднем на 0,4 балла выше, чем в авиакомпании X.
В следующей таблице Paired Samples Correlations представлен коэффициент корреляции (Пирсона) между оценками двух анализируемых переменных. Подробно корреляционный анализ рассматривается в разделе 4.2. Здесь стоит сказать лишь, что чем ближе значение коэффициента к 1, тем сильнее линейная связь между переменными (при условии статистической значимости коэффициента). То есть чем выше уровень оценки по первой переменной, тем выше оценка второй — и наоборот. В нашем случае налицо отсутствие линейной связи между оценками питания в авиакомпании X и Y (коэффициент корреляции = 0,027 при статистической значимости 0,463).
|
Mean |
N |
Std. Devition |
Std. Emor Mean | ||
Pair |
Питание в X |
3,9 |
731 |
,974 |
,036 |
1 |
Питание в Y |
4,3 |
731 |
,787 |
,029 |
|
N |
Correlation |
Sig. | ||
Pair |
Питание в X & |
731 |
,027 |
,463 |
1 |
Питание в Y |
|
Paired Diffirences |
T |
Df |
Sig. (2-tailed) | ||||||
Mean |
Std. Devition |
Std. Emor Mean |
95% Confidence interval of the Difference | ||||||
Lower |
Upper | ||||||||
Pair |
Питание в X & |
-,4 |
1,236 |
,046 |
-,44 |
-,26 |
-7,692 |
730 |
,000 |
1 |
|
Наконец, третья таблица, Paired Samples Test, позволяет сделать вывод о наличии/ отсутствии статистически значимого различия между тестируемыми переменными, что следует из значения в столбце Sig. (2-tailed). В нашем случае различие между оценками питания в авиакомпаниях X и Y, равное 0,4 балла, является статистически значимым (<0,001).
3.1.3. Т-тесты для одной выборки
В результате t-теста для одной выборки можно выяснить, отличается ли значительно реальное среднее значение какой-либо переменной от стандарта. В маркетинговых исследованиях при помощи данного теста определяют, отличается ли среднее значение какого-либо параметра для определенной целевой группы респондентов от среднего значения по всей выборке.
Например, питание на борту самолетов авиакомпании X (переменная qll) всеми респондентами оценено в среднем на 4,0 балла. Вместе с тем пассажиры первого класса оценили питание несколько выше: в среднем на 4,1 балла. Возникает вопрос, является ли выявленное различие статистически значимым. То есть отличаются ли пассажиры первого класса от всех респондентов на основании уровня оценки питания на борту? Выяснить это нам поможет t-тест для одной выборки. Ниже описан механизм его проведения.
|
Для проведения t-теста мы должны отобрать только тех респондентов, которые летают первым классом. (Как это сделать, см. в разделе 1.5.1.1.) После этого следует воспользоваться меню Analyze ► Compare Means ► One-Sample T Test, чтобы открыть диалоговое окно One-Sample T Test (рис. 3.7). Далее перенесите из левого списка всех доступных переменных в область Test Variable(s) интересующую нас переменную qll (Питание). В поле Test Value укажите стандартное значение, с которым мы будем сравнивать среднее тестируемой переменной. В нашем случае это 4,0. Кнопка Options позволяет указать доверительный уровень, для которого устанавливается различие.
После того как SPSS завершит расчет t-теста, в окне SPSS Viewer появятся две таблицы с результатами (рис. 3.8).
|
В первой таблице, One-Sample Statistics, отражены расчеты среднего значения исследуемой переменной (столбец Mean). В нашем случае данное значение отражает среднюю оценку питания пассажиров первого класса (4,1 балла). Вторая таблица, One-Sample Test, позволяет сделать вывод о статистической значимости/незначимости тестируемого различия. Как следует из значения столбца Sig. (2-tailed), различие в оценках пассажиров первого класса и всей выборочной совокупности респондентов является статистически незначимым (0,149). Разница между реальным и тестируемым значениями (в нашем случае — 0,1 балла) отражается в столбце Mean Difference.
< Предыдущая | Следующая > |
---|