1. Предмет теории вероятностей и математической статистики
Теория вероятностей – это математическая дисциплина, изучающая закономерности массовых случайных явлений.
Теория вероятностей не может предсказать результат отдельного опыта со случайными исходами, но она достаточно надежно предсказывает результат большого числа таких опытов.
Основными объектами изучения в теории вероятностей являются случайные события и случайные величины.
Случайное событие – это качественное понятие. Событие либо происходит, либо не происходит. Случайная величина – понятие количественное: в результате опыта случайная величина принимает одно из множества своих возможных значений.
Не все случайные явления (эксперименты) можно изучать методами теории вероятностей, а лишь те, которые могут быть воспроизведены в одних и тех же условиях. Случайность и хаос - не одно и то же. Оказывается, что и в случайных экспериментах наблюдаются некоторые закономерности, например, Свойство статистической устойчивости: доля экспериментов, в которых рассматриваемое событие произошло, имеет тенденцию стабилизироваться с ростом общего числа экспериментов, приближаясь к некоторому числу. Это число служит объективной характеристикой Степени возможности событию произойти.
Математической статистикой называется раздел прикладной математики, изучающий методы сбора, обработки и анализа статистических данных для научных и практических целей. Математическая статистика занимается изучением закономерностей, которым подчиняются массовые явления, на основе результатов наблюдений.
Предметом исследования в математической статистике является совокупность объектов, Однородных относительно некоторых признаков, например, мальчики 12 лет г. Томска; бегуны – мастера спорта России.
Приведем примеры применения теории вероятностей и математической статистики [1].
Пример 1.1. Из разговора заводских менеджеров: «мастерская дает двадцать три процента брака». Одна единица продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Видимо, имеется в виду, что в партии большого объема содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос, а что значит «примерно»? Если из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000 – 300, или из 100000 – 30000 и т. д., то как оценить это «примерно»?
Пример 1.2. Контроль качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, из нее отбирается выборка. По результатам контроля выборки делается заключение о всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т. е. необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. В производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.
Похожие проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства, оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности и т. п. Всюду нужна жеребьевка или подобные ей процедуры.
Пример 1.3. При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра и т. п.) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо сделать многократные измерения единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической погрешности присутствует и случайная погрешность.
Поэтому встает вопрос, как по результатам измерений узнать, есть ли систематическая погрешность. Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то, сопоставив измерение с бросанием монеты (положительную погрешность – с выпадением герба, отрицательную – решетки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается)), сведем задачу проверки отсутствия систематической погрешности к проверке симметричности монеты.
Пример 1.4. При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определенному числу Р0, например, Р0 = 0.23 (см. пример 1.1).
< Предыдущая | Следующая > |
---|