55. Формула парабол (формула Симпсона или квадратурная формула)

(Томас Симпсон (1710-1761)- английский математик)

Разделим отрезок интегрирования [a, b] на четное число отрезков (2m). Площадь криволинейной трапеции, ограниченной графиком функции f(x) заменим на площадь криволинейной трапеции, ограниченной параболой второй степени с осью симметрии, параллельной оси Оу и проходящей через точки кривой, со значениями f(x0), f(x1), f(x2).

Для каждой пары отрезков построим такую параболу.

у

0 х0 х1 х2 х3 х4 х

Уравнения этих парабол имеют вид Ax2 + Bx + C, где коэффициенты А, В, С могут быть легко найдены по трем точкам пересечения параболы с исходной кривой.

(1)

Обозначим .

Если принять х0 = - h, x1 = 0, x2 = h, то (2)

Тогда уравнения значений функции (1) имеют вид:

C учетом этого: .

Отсюда уравнение (2) примет вид:

Тогда

Складывая эти выражения, получаем Формулу Симпсона:

Чем больше взять число m, тем более точное значение интеграла будет получено.

Пример. Вычислить приближенное значение определенного интеграла

с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей.

По формуле Симпсона получим:

m

0

1

2

3

4

5

6

7

8

9

10

x

-2

-1

0

1

2

3

4

5

6

7

8

f(x)

2.828

3.873

4

4.123

4.899

6.557

8.944

11.874

15.232

18.947

22.978

Точное значение этого интеграла – 91.173.

Как видно, даже при сравнительно большом шаге разбиения точность полученного результата вполне удовлетворительная.

Для сравнения применим к этой же задаче формулу трапеций.

Формула трапеций дала менее точный результат по сравнению с формулой Симпсона.

При использовании компьютерной версии “Курса высшей математики” возможно запустить программу, которая вычисляет любой определенный интеграл всеми рассмотренными выше методами.


Для запуска программы дважды щелкните на значке

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

Кроме вышеперечисленных способов, можно вычислить значение определенного интеграла с помощью разложения подинтегральной функции в степенной ряд.

Принцип этого метода состоит в том, чтобы заменить подинтегральную функцию по Формуле Тейлора и почленно проинтегрировать полученную сумму.

Пример. С точностью до 0,001 вычислить интеграл

Т. к. интегрирование производится в окрестности точки Х=0, то можно воспользоваться для разложения подинтегральной функции формулой Маклорена.

Разложение функции cosX имеет вид:

Зная разложение функции cosХ легко найти функцию 1 – cosX:

В этой формуле суммирование производится по П от 1 до бесконечности, а в предыдущей – от 0 до бесконечности. Это – не ошибка, так получается в результате преобразования.

Теперь представим в виде ряда подинтегральное выражение.

Теперь представим наш интеграл в виде:

В следующем действии будет применена теорема о почленном интегрировании ряда. (Т. е. интеграл от суммы будет представлен в виде суммы интегралов членов ряда).

Вообще говоря, со строго теоретической точки зрения для применения этой теоремы надо доказать, что ряд сходится и, более того, сходится равномерно на отрезке интегрирования [0, 0,5]. Эти вопросы будут подробно рассмотрены позже (См. Действия со степенными рядами.) Отметим лишь, что в нашем случае подобное действие справедливо хотя бы по свойствам определенного интеграла (интеграл от суммы равен сумме интегралов).

Итак:

Итого, получаем:

Как видно, абсолютная величина членов ряда очень быстро уменьшается, и требуемая точность достигается уже при третьем члене разложения.

Для справки: Точное (вернее – более точное) значение этого интеграла: 0,2482725418…

При использовании компьютерной версии “Курса высшей математики” возможно запустить программу, которая вычисляет любой определенный интеграл с помощбю степенных рядов и выводит подробный отчет о ходе решения.


Для запуска программы дважды щелкните на значке

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

© 2011-2024 Контрольные работы по математике и другим предметам!