20. Дисперсия СВ
1. R=Xmax-Xmin – размах СВ
2. M(|X-m|) – среднее абсолютное отклонение СВ от центра группирования
3. M(X-m)2 – дисперсия – МО квадрата отклонения СВ от центра группирования
M(X-m)2=D(X)=s2=sx2=s2(X)
– среднеквадратическое отклонение (стандартное отклонение).
Основные свойства дисперсии:
1. Для любой СВ Х: D(X)³0. При Х=const D(X)º0.
2. D(X)=M(X2)-M2(X)=M(X2-2mX-m2)
3. D(cX)=c2D(X)
4. D(X+c)=D(X)
5. D(X+Y)=D(X)+D(Y), D(X-Y)=D(X)+D(Y)
В общем случае:
D(X+Y)=M(X+Y-mx+y)2=M((X-mx)+(Y-my))2=M((X=mx)2+2(X-mx)(Y-my)+(Y-my)2)=
=D(X)+2M((X-mx)(Y-my))+D(Y). Второй член этого выражения называется Корреляционным моментом. mx+y=M(X)+M(Y)=mx+my. D(X)=M(X-mx)2.
M((X-mx)(Y-my))=K(X, Y)=Kxy=cov(x, y) – ковариация
Kxy/sxsy=rxy – коэффициент корреляции
6. Независимые СВ: D(XY)=D(X)D(Y)+M2(X)D(Y)+M2(Y)D(X)
Дисперсия основных СВ
ДСВ
1. Биноминальные D(X)=npq
2. Пуассоновские D(X)=l
3. Бернуллиевы D(X)=pq
НСВ
1. Равномерно распределенные D(X)=(b-a)2/12
2. Нормально распределенные D(X)= s2
3. Экспоненциально распределенные D(X)=1/l2
Математическое ожидание и дисперсия суммы случайных величин
X1,X2,…,Xn – независимые СВ с одинаковым законом распределения.
M(Xk)=a D(Xk)=s2
– среднее арифметическое
< Предыдущая | Следующая > |
---|