09.1. Примеры

Пример 1. Новый продукт Московского часового завода. Конструкторское бюро Московского часового завода (МЧЗ) разработало новый настольный радиобудильник. По мнению проектировщиков, запуск в серию нового продукта позволит расши­рить рынок сбыта и получить дополнительную прибыль.

Руководство МЧЗ решило изучить возможности реализации нового продукта. Результатом исследования должны стать реко­мендации относительно действий, которые следует предпринять для организации производства и сбыта нового продукта. Перечень работ и характеристики времени их выполнения (в неделях) ука­заны в следующей таблице:

Вопросы:

1. Чему равен критический путь для данного проекта?

2. Чему равно ожидаемое время выполнения проекта?

3. С какой вероятностью проект может быть выполнен за 20 недель?

Решение. На рис. 1 показано графическое представление это­го проекта.

Рис. 1

1-й способ решения. Используя информацию, указанную в условии, определяем ожидаемое время и вариацию времени вы­полнения каждой работы проекта. Например, для работы А:

Проводя аналогичные расчеты для других работ, получаем сле­дующую таблицу:

Полагая время выполнения работы равным ожидаемому вре­мени ее выполнения Ti, находим критический путь. Используем для этого метод СРМ В виде следующей таблицы с указанием пред­шествующих работ:

Результаты расчетов представлены в следующей таблице:

Критический путь для данного проекта включает работы А, Е, Н, I, J. Длина критического пути равна 6+3+4+2+2=17. Это озна­чает, что ожидаемое время выполнения проекта составляет 17 недель.

Предполагая, что распределение времени выполнения проек­та является нормальным, можно определить вероятность того, что проект будет выполнен за 20 недель.

Определим дисперсию времени выполнения проекта. Ее зна­чение равно сумме значений дисперсий времени выполнения ра­бот на критическом пути:

S2(T) = 1,78 + 0,11 + 0,69 + 0,03 + 0,11 = 2,72.

Учитывая, что находим значе­ние Z для нормального распределения при T0 = 20:

Используя таблицу нормального распределения (Приложение 1), находим вероятность того, что время Т выполнения проекта на­ходится в интервале Е(T) £ T £ Т0. На пересечении строки «1,8» и столбца «0,02» таблицы нормального распределения находим значение 0,4656. Следовательно, искомая вероятность того, что время Т выполнения проекта удовлетворяет условию Т £ 20, т. е. вероятность того, что проект будет выполнен за 20 недель при ожидаемом времени его выполнения 17 недель, равна 0,5 + 0,4656 = 0,9656.

2-й способ решения. Исходные данные представлены в следующей таблице (оценки времени выполнения работ указаны в неделях):

Проводя расчеты, получаем следующие результаты:

Последний столбец таблицы содержит значения стандартных ошибок времени выполнения проекта в целом (первое значение s(Т) = 1,65) и всех его работ в частности.

Так же, как в первом способе, находим значение Z для нор­мального распределения при Т0 = 20:

Используя таблицу нормального распределения (см. Приложе­ние 1), находим вероятность того, что время T выполнения про­екта находится в интервале Е(T) £ Т £ Т0. На пересечении стро­ки «1,8» и столбца «0,02» таблицы нормального распределения находим значение 0,4656. Следовательно, искомая вероятность того, что проект будет выполнен за 20 недель при ожидаемом вре­мени его выполнения 17 недель, равна 0,5 + 0,4656 = 0,9656.

Ответы:

1. Критический путь составляют работы А, Е, Н, I, J.

2.17 недель. 3. 0,9656.

© 2011-2024 Контрольные работы по математике и другим предметам!