19. Моделирование сезонных колебаний

Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий:

. (4.3)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.

Общий вид мультипликативной модели выглядит так:

. (4.4)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (T), сезонной (S) и случайной (E) компонент.

Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений T, S и E для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1) Выравнивание исходного ряда методом скользящей средней.

2) Расчет значений сезонной компоненты S.

3) Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.

4) Аналитическое выравнивание уровней () или () и расчет значений T с использованием полученного уравнения тренда.

5) Расчет полученных по модели значений () или ().

6) Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Методику построения каждой из моделей рассмотрим на примерах.

Пример. Построение аддитивной модели временного ряда.

Обратимся к данным, представленным в табл. 4.1.

Было показано, что данный временной ряд содержит сезонные колебания периодичностью 4, т. к. объем потребления электроэнергии в первый-второй кварталы ниже, чем в третий-четвертый. Рассчитаем компоненты аддитивной модели временного ряда.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 4.5).

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 4.5). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 4.5).

Таблица 4.5

№ квартала,

T

Объем потребления

Электроэнергии,

Итого за

Четыре квартала

Скользящая средняя

За четыре квартала

Центрированная

Скользящая

Средняя

Оценка

Сезонной

Компоненты

1

2

3

4

5

6

1

375

2

371

2630

657,5

3

869

2612

653

655,25

213,75

4

1015

2712

678

665,5

349,5

5

357

2835

708,75

693,75

‑336,75

6

471

2840

710

709,375

‑238,375

7

992

2873

718,25

714,125

277,875

8

1020

2757

689,25

703,75

316,25

9

390

2757

689,25

689,25

‑299,25

10

355

2642

660,5

674,875

‑319,875

11

992

2713

678,25

669,375

322,625

12

905

2812

703

690,625

214,375

13

461

2740

685

694

‑233

14

454

2762

690,5

687,75

‑233,75

15

920

16

927

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 4.5). Используем эти оценки для расчета значений сезонной компоненты S (табл. 4.6). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Для данной модели имеем:

.

Корректирующий коэффициент: .

Рассчитываем скорректированные значения сезонной компоненты () и заносим полученные данные в таблицу 4.6.

Проверим равенство нулю суммы значений сезонной компоненты:

.

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины (гр. 4 табл. 4.7). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

Шаг 4. Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда () с помощью линейного тренда. Результаты аналитического выравнивания следующие:

.

Подставляя в это уравнение значения , найдем уровни T для каждого момента времени (гр. 5 табл. 4.7).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням T значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 4.7).

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

Таблица 4.7

T

T

1

2

3

4

5

6

7

8

1

375

‑292,448

667,448

672,700

380,252

‑5,252

27,584

2

371

‑266,781

637,781

673,624

406,843

‑35,843

1284,721

3

869

268,636

600,364

674,547

943,183

‑74,183

5503,117

4

1015

290,593

724,407

675,470

966,063

48,937

2394,830

5

357

‑292,448

649,448

676,394

383,946

‑26,946

726,087

6

471

‑266,781

737,781

677,317

410,536

60,464

3655,895

7

992

268,636

723,364

678,240

946,876

45,124

2036,175

8

1020

290,593

729,407

679,163

969,756

50,244

2524,460

9

390

‑292,448

682,448

680,087

387,639

2,361

5,574

10

355

‑266,781

621,781

681,010

414,229

‑59,229

3508,074

11

992

268,636

723,364

681,933

950,569

41,431

1716,528

12

905

290,593

614,407

682,857

973,450

‑68,450

4685,403

13

461

‑292,448

753,448

683,780

391,332

69,668

4853,630

14

454

‑266,781

720,781

684,703

417,922

36,078

1301,622

15

920

268,636

651,364

685,627

954,263

‑34,263

1173,953

16

927

290,593

636,407

686,550

977,143

‑50,143

2514,320

Рис. 4.6.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.

.

Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда по кварталам за 4 года.

Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме потребления электроэнергии на I и II кварталы 2003 года. Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом,

;

.

Т. е. в первые два квартала 2003 г. следовало ожидать объема потребления электроэнергии порядка 395 и 422 кВт соответственно.

Построение Мультипликативной модели рассмотрим на данных предыдущего примера.

Шаг 1. Методика, применяемая на этом шаге, полностью совпадает с методикой построения аддитивной модели.

Таблица 4.8

№ квартала,

T

Объем

Потребления

Электроэнергии,

Итого

За четыре

Квартала

Скользящая

Средняя

За четыре

Квартала

Центрированная

Скользящая

Средняя

Оценка

Сезонной

Компоненты

1

2

3

4

5

6

1

375

2

371

2630

657,5

3

869

2612

653

655,25

1,3262

4

1015

2712

678

665,5

1,5252

5

357

2835

708,75

693,75

0,5146

6

471

2840

710

709,375

0,6640

7

992

2873

718,25

714,125

1,3891

8

1020

2757

689,25

703,75

1,4494

9

390

2757

689,25

689,25

0,5658

10

355

2642

660,5

674,875

0,5260

11

992

2713

678,25

669,375

1,4820

12

905

2812

703

690,625

1,3104

13

461

2740

685

694

0,6643

14

454

2762

690,5

687,75

0,6601

15

920

16

927

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 4.8). Эти оценки используются для расчета сезонной компоненты S (табл. 4.9). Для этого найдем средние за каждый квартал оценки сезонной компоненты . Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Имеем

.

Определяем корректирующий коэффициент:

.

Скорректированные значения сезонной компоненты получаются при умножении ее средней оценки на корректирующий коэффициент K.

Проверяем условие равенство 4 суммы значений сезонной компоненты:

.

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины (гр. 4 табл. 4.10), которые содержат только тенденцию и случайную компоненту.

Таблица 4.10

T

T

1

2

3

4

5

6

7

1

375

0,5779

648,9012

654,9173

378,4767

0,9908

2

371

0,6128

605,4178

658,1982

403,3439

0,9198

3

869

1,3901

625,1349

661,4791

919,5221

0,9451

4

1015

1,4192

715,1917

664,7600

943,4274

1,0759

5

357

0,5779

617,7539

668,0409

386,0608

0,9247

6

471

0,6128

768,6031

671,3218

411,3860

1,1449

7

992

1,3901

713,6177

674,6027

937,7652

1,0578

8

1020

1,4192

718,7148

677,8836

962,0524

1,0602

9

390

0,5779

674,8572

681,1645

393,6450

0,9907

10

355

0,6128

579,3081

684,4454

419,4281

0,8464

11

992

1,3901

713,6177

687,7263

956,0083

1,0377

12

905

1,4192

637,6832

691,0072

980,6774

0,9228

13

461

0,5779

797,7159

694,2881

401,2291

1,1490

14

454

0,6128

740,8616

697,5690

427,4703

1,0621

15

920

1,3901

661,8229

700,8499

974,2515

0,9443

16

927

1,4192

653,1849

704,1308

999,3024

0,9277

Шаг 4. Определим компоненту T в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни . В результате получим уравнение тренда:

.

Подставляя в это уравнение значения , найдем уровни T для каждого момента времени (гр. 5 табл. 4.10).

Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл. 4.10). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Рис. 4.7.

Расчет ошибки в мультипликативной модели производится по формуле:

.

Для сравнения мультипликативной модели и других моделей временного ряда можно, по аналогии с аддитивной моделью, использовать сумму квадратов абсолютных ошибок :

.

Сравнивая показатели детерминации аддитивной и мультипликативной моделей, делаем вывод, что они примерно одинаково аппроксимируют исходные данные.

Шаг 6. Прогнозирование по мультипликативной модели. Если предположить, что по нашему примеру необходимо дать прогноз об общем объеме потребления электроэнергии на I и II кварталы 2003 года, прогнозное значение уровня временного ряда в мультипликативной модели есть произведение трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом

;

.

Т. е. в первые два квартала 2003 г. следовало ожидать объема потребления электроэнергии порядка 409 и 436 кВт соответственно.

Таким образом, аддитивная и мультипликативная модели дают примерно одинаковый результат по прогнозу.

© 2011-2024 Контрольные работы по математике и другим предметам!