10. Обобщенный метод наименьших квадратов (ОМНК)

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS – Ordinary Least Squares) заменять Обобщенным методом, т. е. Методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Рассмотрим использование ОМНК для корректировки гетероскедастичности.

Будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т. е.

,

Где – дисперсия ошибки при конкретном I-м значении фактора; – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения при модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе I-го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии Y по X мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:

,

А исходные данные для данного уравнения будут иметь вид:

, .

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные Y и X взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Соответственно получим следующую систему нормальных уравнений:

Если преобразованные переменные X и Y взять в отклонениях от средних уровней, то коэффициент регрессии B можно определить как

.

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии B определяется по формуле:

.

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии B представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,

Для которой дисперсия остаточных величин оказалась пропорциональна . представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих I значений факторов и . Ввиду того, что

,

Рассматриваемая модель примет вид

,

Где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности K. Уравнение с преобразованными переменными составит

.

Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

.

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности . В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки пропорциональны значениям фактора. Так, если в уравнении

Предположить, что , т. е. и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть Y – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение

Является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результирующего показателя затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид

,

Где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фондовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.

В нем новые переменные: – затраты на единицу (или на 1 руб. продукции), – фондоемкость продукции, – трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное обоснование: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза трансформирует линейное уравнение

В уравнение

,

В котором параметры A и B поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.

Пример. Рассматривая зависимость сбережений Y от дохода X, по первоначальным данным было получено уравнение регрессии

.

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

.

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т. е. 0,1178 и 0,1026 – оценки параметра B зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

© 2011-2024 Контрольные работы по математике и другим предметам!