1.10. Нелинейная связь между переменными
Разумеется, связь между конкретными экономическими факторами вовсе не обязана быть линейной.
Например, если мы рассматриваем зависимость от располагаемого дохода
Не всех Затрат на личное потребление, а лишь затрат
на некоторый Продукт питания (или группу продуктов питания), например, на куриные яйца, то уже по чисто физиологическим причинам функция связи
![]()
Скорее всего, должна Замедлять свой рост при возрастании
, Так что возможный график этой функции имеет вид

В такой ситуации нельзя говорить о склонности к потреблению данного продукта как о постоянной величине. Вместо этого, в рассмотрение вводят понятие Предельной (Marginal) Склонности к потреблению (MPC), которая для заданной величины
Располагаемого дохода определяется формулой
![]()
Иначе говоря,
![]()
Замедление скорости роста функции
соответствует Убыванию
С возрастанием
. Уточняя предположения о поведении
, Можно получить ту или иную форму связи между переменными
и
.
Среди прочих возможных форм связи между
и
отметим Степенную связь
![]()
В которой
. Для такой связи
![]()
Так что предельная склонность к потреблению Монотонно убывает с ростом
.
Степенную форму связи можно привести к линейной форме, если вместо уровней дохода и расходов на потребление рассмотреть Логарифмы уровней по какому-нибудь (но одному и тому же!) основанию (например, натуральные или десятичные логарифмы).
Действительно, переходя к логарифмам уровней, получаем соотношение
![]()
Или, обозначая ![]()
![]()
Линейной модели связи в логарифмах соответствует линейная модель наблюдений
![]()
Которую мы уже умеем оценивать.
Заметим, что коэффициент
в последних выражениях есть не что иное как
![]()
Эта величина не зависит от выбора основания логарифмов, так что
![]()
Где используются Натуральные логарифмы.
Вообще, если мы имеем связь между какими-то переменными экономическими факторами
И
в виде
![]()
То мы определяем функцию
![]()
Как Предельную склонность Y по отношению к X.
В экономической теории существенную роль играет Функция эластичности, определяемая как предел

Отношения Процентного изменения
к Процентному изменению
, когда последнее Стремится к нулю. Правую часть последнего соотношения можно записать в виде
![]()
Заметим также, что
![]()
Так что
![]()
Значение
равно угловому коэффициенту касательной к графику функции
при
, тогда как значение
равно угловому коэффициенту касательной к графику зависимости
от
при
. Как следствие, условие постоянства
, т. е.
, Означает Линейную связь между уровнями факторов
![]()
А условие постоянства эластичности
означает Линейную связь между логарифмами уровней
![]()
Соответствующую степенной связи между уровнями
![]()
Выражающей степенное возрастание (при
) или убывание (при
) уровней фактора
при возрастании уровней фактора
.
Заметим, что если
, то эту постоянную можно трактовать как Процентное изменение уровня фактора
При изменении фактора
На 1%.
Отметим также, что в модели
функция эластичности имеет вид

И при
возрастает от
до
с возрастанием значений
От
до
. Если
, то
. При
функция эластичности
убывает от
до
, когда
изменяется от
до
.
К линейной форме связи можно привести и некоторые другие виды зависимости, характерные для экономических моделей.
Так, если
— объем плановых инвестиций, а
— Норма процента, то между ними существует связь, которая иногда может быть выражена в форме
![]()
И имет графическое представление

Заменой переменной
приводим указанную связь к линейной форме
В этой модели эластичность
По
отрицательна и Меньше единицы по абсолютной величине:

![]()
(«объем плановых инвестиций Неэластичен по отношению к норме процента»).
В моделях «доход — потребление», относящихся к потреблению Продуктов питания, линейная модель в логарифмах уровней, выражающая уменьшение
С возрастанием
, Все же Не всегда удовлетворительна, поскольку Эластичность в такой модели постоянна. Опять же по чисто физиологическим причинам, скорее более подходящей будет модель связи с Убывающей (в конечном счете) Эластичностью. Такого рода связь между факторами
и
может иметь вид
![]()
(См. следующий график, построенный при A = 5, B = 10.)

Действительно,

Однако, здесь возникают проблемы с Отрицательными значениями
при малых значениях
.
Последнего недостатка нет в модели
![]()
Т. е.
![]()

(График построен при значениях A =0.1, B =1.) Здесь
![]()
(закон Энгеля убывания эластичности потребления продуктов питания по доходу).
Обе последние модели сводятся к линейной форме связи путем перехода от уровней переменных к их логарифмам или обратным величинам.
Замечание
Если исследователь принимает модель наблюдений
![]()
То тем самым, он соглашается тем, что
![]()
Или
![]()
Т. е. соглашается с мультипликативным вхождением ошибок
В нелинейное уравнение для
.
В то же время, не исключено, что по существу дела модель должна иметь вид
![]()
Т. е. имеет Аддитивные ошибки. В последнем случае взятие логарифмов от обеих частей Не приводит к линейной модели наблюдений. В такой ситуации оценки наименьших квадратов параметров
и
приходится получать Итерационными методами, в процессе реализации которых производится Последовательное приближение к минимуму суммы квадратов
![]()
| < Предыдущая | Следующая > |
|---|