49. Показательные уравнения, показательно-степенные уравнения

Показательным уравнением называется уравнение, которое содержит неизвестную величину в показателе степени при постоянном основании A (A > 0).

Типы показательных уравнений и способы их решения

Всюду далее F(X), G(X) – некоторые выражения с неизвестной величиной X.

I тип: уравнение вида

где (6.2)

Имеет решение, если > 0. Его решают логарифмированием по основанию A:

Тогда

(6.3)

Решение уравнения (6.3) производят соответственно типу этого уравнения.

II тип: Уравнение вида

где (6.4)

По свойству равенства степеней равносильно уравнению

Последнее уравнение решают в зависимости от его типа.

III тип: уравнение вида

(6.5)

Где F – некоторое выражение относительно

Производят замену переменной и решают уравнение F(Y) = 0.

Если – корни уравнения, то после возвращения к старой переменной решение уравнения (6.5) сводится к решению равносильной ему совокупности уравнений

IV тип: уравнения, решаемые графическим методом.

Для таких уравнений строят соответствующие графики для левой и правой частей уравнения. Определяют, для каких значений X графики имеют общую ординату. Используют также иные функциональные свойства, в частности, монотонность функции (возрастание, убывание).

Показательно-степенным уравнением называется уравнение, в котором неизвестная величина содержится и в основании степени, и в показателе. Такие уравнения принято решать при условии, что основания степени положительны (ОДЗ уравнения).

Типы показательно-степенных уравнений

И способы их решения

Всюду далее F(X), G(X), H(X) Некоторые выражения с неизвестной X, F(X) > 0.

I тип: уравнение вида

(6.6)

Решение уравнения (6.6) на ОДЗ сводится к решению совокупности

II тип: уравнение вида

(6.7)

Решение уравнения (6.7) на ОДЗ сводится к решению совокупности

Пример 1. Решить уравнение

Решение. 1-й способ. Имеем уравнение I типа (формула (6.2)). Решаем логарифмированием по основанию 3. Получаем:

т. е.

Приходим к линейному уравнению

Откуда

2-й способ. Преобразуем правую часть при помощи основного логарифмического тождества:

Получили уравнение II типа (формула (6.4)), которое решаем по свойству равенства степеней:

Пришли к ответу:

Пример 2. Решить уравнение

Решение. Выполним необходимые преобразования, сведем показательные выражения к одному и тому же основанию 3:

По свойству степеней:

Получаем ответ: Х = 0.

Пример 3. Решить уравнение

Решение. Преобразуем уравнение

Имеем квадратное уравнение относительно 2Х. Решаем при помощи замены Получаем:

Корнями последнего уравнения являются значения

Возвращаясь к неизвестной X, имеем совокупность:

Первое уравнение совокупности решений не имеет. Решаем второе уравнение:

т. е.

Получили ответ: Х = 3.

Пример 4. Решить уравнение

Решение. Выполним необходимые преобразования:

Имеем однородное уравнение. Разделим обе части уравнения на 92Х (92Х ¹ 0). Получим:

Т. е. получили квадратное уравнение относительно Вводим замену Тогда

Откуда

Возвращаемся к старой переменной:

Получили ответ:

Пример 5. Решить уравнение

Решение. 1-й способ. Подбором убеждаемся, что Х = 2– корень уравнения. Функции (т. е. ) и монотонно возрастают (рис. 6.12). Они имеют единственную общую точку.

Рис. 6.12

2-й способ. Разделим обе части уравнения на 2Х. Получим:

или

Заменим Получим

При Х = 2 получим основное тригонометрическое тождество, т. е. Х = 2 является корнем исходного уравнения.

Получили ответ: Х = 2.

Пример 6. Решить уравнение

Решение. ОДЗ: X = 2, 3, …, N, … .

Перепишем уравнение в виде

Разделим обе части уравнения на (так как ). Получим:

Вводим замену

Получаем квадратное уравнение откуда

Возвращаемся к старой переменной:

Но ни один из корней не подходит по ОДЗ. Следовательно, уравнение корней не имеет.

Пример 7. Решить уравнение

Решение. ОДЗ: X ¹ 2.

Решением является совокупность

Корень X = 2 не подходит по ОДЗ.

Получили ответ: X = 1, X = 3.

© 2011-2024 Контрольные работы по математике и другим предметам!